Menu Close

suppose-the-ratio-of-Jim-to-Rohn-is-2-1-and-the-ratio-of-Rohn-to-Bill-is-3-4-how-do-i-find-for-the-ratio-of-Jim-to-Bill-




Question Number 157584 by MathsFan last updated on 24/Oct/21
suppose   the ratio of Jim to Rohn is 2:1   and the ratio of Rohn to Bill is   3:4, how do i find for the ratio  of Jim to Bill.....???
$${suppose}\: \\ $$$${the}\:{ratio}\:{of}\:{Jim}\:{to}\:{Rohn}\:{is}\:\mathrm{2}:\mathrm{1} \\ $$$$\:{and}\:{the}\:{ratio}\:{of}\:{Rohn}\:{to}\:{Bill}\:{is} \\ $$$$\:\mathrm{3}:\mathrm{4},\:{how}\:{do}\:{i}\:{find}\:{for}\:{the}\:{ratio} \\ $$$${of}\:{Jim}\:{to}\:{Bill}…..??? \\ $$
Answered by peter frank last updated on 25/Oct/21
x=jim  y=Rohn  z=Bill  (x/y)=(2/1)=2y...(i)  (y/z)=(3/4)  4y=3z  z=(4/3)y...(ii)  (x/z)=2y÷(4/3)y  (x/z)=(6/4)=(3/2)
$$\mathrm{x}=\mathrm{jim} \\ $$$$\mathrm{y}=\mathrm{Rohn} \\ $$$$\mathrm{z}=\mathrm{Bill} \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}=\frac{\mathrm{2}}{\mathrm{1}}=\mathrm{2y}…\left(\mathrm{i}\right) \\ $$$$\frac{\mathrm{y}}{\mathrm{z}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{4y}=\mathrm{3z} \\ $$$$\mathrm{z}=\frac{\mathrm{4}}{\mathrm{3}}\mathrm{y}…\left(\mathrm{ii}\right) \\ $$$$\frac{\mathrm{x}}{\mathrm{z}}=\mathrm{2y}\boldsymbol{\div}\frac{\mathrm{4}}{\mathrm{3}}\mathrm{y} \\ $$$$\frac{\mathrm{x}}{\mathrm{z}}=\frac{\mathrm{6}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by MathsFan last updated on 25/Oct/21
thanks
$${thanks} \\ $$
Answered by Rasheed.Sindhi last updated on 25/Oct/21
 determinant ((J,R,B),(2,1,),(,3,4),(6,3,4))  J:B=6:4=3:2
$$\begin{array}{|c|c|c|c|}{{J}}&\hline{{R}}&\hline{{B}}\\{\mathrm{2}}&\hline{\mathrm{1}}&\hline{}\\{}&\hline{\mathrm{3}}&\hline{\mathrm{4}}\\{\mathrm{6}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}\\\hline\end{array}\:\:{J}:{B}=\mathrm{6}:\mathrm{4}=\mathrm{3}:\mathrm{2} \\ $$
Commented by MathsFan last updated on 25/Oct/21
 how did get the 6,3 and 4 determinant ((),(),())
$$\:{how}\:{did}\:{get}\:{the}\:\mathrm{6},\mathrm{3}\:{and}\:\mathrm{4}\begin{array}{|c|c|c|}\\\\\\\hline\end{array} \\ $$
Commented by Rasheed.Sindhi last updated on 25/Oct/21
 determinant ((J,R,B,),(2,1^★ ,,),(,3^★ ,4,),(6,3^∗ ,,(mutiplied by 3 to 1st ratio_((to meet 3 in 2nd position)_(3^∗ =LCM(1^★ ,3^★ )) ) )),(,3,4,(mutiplied by 1 to 2nd ratio_((to meet 3(LCM(1^★ ,3^★ )) in 1st  position)) )),(6,3,4,))  J:B=6:4=3:2        OR    determinant ((J,R,B),(a,b,),(,c,d),((ac),(bc),(bd)))  J:B=ac:bd
$$\begin{array}{|c|c|c|c|c|c|}{{J}}&\hline{{R}}&\hline{{B}}&\hline{}\\{\mathrm{2}}&\hline{\mathrm{1}^{\bigstar} }&\hline{}&\hline{}\\{}&\hline{\mathrm{3}^{\bigstar} }&\hline{\mathrm{4}}&\hline{}\\{\mathrm{6}}&\hline{\mathrm{3}^{\ast} }&\hline{}&\hline{\underset{\underset{\mathrm{3}^{\ast} ={LCM}\left(\mathrm{1}^{\bigstar} ,\mathrm{3}^{\bigstar} \right)} {\left({to}\:{meet}\:\mathrm{3}\:{in}\:\mathrm{2}{nd}\:{position}\right)}} {{mutiplied}\:{by}\:\mathrm{3}\:{to}\:\mathrm{1}{st}\:{ratio}}}\\{}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{\underset{\left({to}\:{meet}\:\mathrm{3}\left({LCM}\left(\mathrm{1}^{\bigstar} ,\mathrm{3}^{\bigstar} \right)\right)\:{in}\:\mathrm{1}{st}\:\:{position}\right)} {{mutiplied}\:{by}\:\mathrm{1}\:{to}\:\mathrm{2}{nd}\:{ratio}}}\\{\mathrm{6}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{}\\\hline\end{array}\:\:{J}:{B}=\mathrm{6}:\mathrm{4}=\mathrm{3}:\mathrm{2} \\ $$$$\:\:\:\:\:\:\mathrm{OR} \\ $$$$\:\begin{array}{|c|c|c|c|}{{J}}&\hline{{R}}&\hline{{B}}\\{{a}}&\hline{{b}}&\hline{}\\{}&\hline{{c}}&\hline{{d}}\\{{ac}}&\hline{{bc}}&\hline{{bd}}\\\hline\end{array}\:\:{J}:{B}={ac}:{bd} \\ $$
Commented by MathsFan last updated on 25/Oct/21
interesting  thank you
$${interesting} \\ $$$${thank}\:{you} \\ $$
Answered by mr W last updated on 25/Oct/21
((jim)/(bill))=((jim)/(rohn))×((rohn)/(bill))=(2/1)×(3/4)=(3/2)
$$\frac{{jim}}{{bill}}=\frac{{jim}}{{rohn}}×\frac{{rohn}}{{bill}}=\frac{\mathrm{2}}{\mathrm{1}}×\frac{\mathrm{3}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by MathsFan last updated on 25/Oct/21
im grateful sir
$${im}\:{grateful}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *