Menu Close

Suppose-x-and-y-are-real-such-that-log-4-x-log-6-y-log-9-x-y-find-y-x-




Question Number 167539 by Tawa11 last updated on 19/Mar/22
Suppose  x and y are real, such that,   log_4 x   =   log_6 y   =   log_9 (x + y),  find   (y/x)
Supposexandyarereal,suchthat,log4x=log6y=log9(x+y),findyx
Answered by Rasheed.Sindhi last updated on 19/Mar/22
 log_4 x = log_6 y = log_9 (x + y)=k(say)  x=4^k  ,y=6^k , x+y=9^k   4^k +6^k =9^k   ((4/9))^k +((6/9))^k =1  ((2/3))^(2k) +((2/3))^k =1  ((2/3))^k =u  u^2 +u−1=0  u=((−1±(√5) )/2)  ((2/3))^k =((−1±(√5) )/2)  (y/x)=(6^k /4^k )=((3/2))^k =(((2/3))^k )^(−1) =(((−1±(√5) )/2))^(−1)   =(2/(−1±(√5) ))∙((−1∓(√5) )/(−1∓(√5) ))=((−2(1±(√5) ))/(1−5))  =((1±(√5))/2)
log4x=log6y=log9(x+y)=k(say)x=4k,y=6k,x+y=9k4k+6k=9k(49)k+(69)k=1(23)2k+(23)k=1(23)k=uu2+u1=0u=1±52(23)k=1±52yx=6k4k=(32)k=((23)k)1=(1±52)1=21±51515=2(1±5)15=1±52
Commented by Tawa11 last updated on 19/Mar/22
God bless you sir.
Godblessyousir.
Answered by Rasheed.Sindhi last updated on 19/Mar/22
   log_4 x = log_6 y = log_9 (x + y)=k (say)  x=4^k  ,y=6^k ,    x+y=9^k ⇒4^k +6^k =9^k   1+(6^k /4^k )=(9^k /4^k )  1+((3/2))^k =((3/2))^(2k)   ((3/2))^(2k) −((3/2))^k −1=0  ((3/2))^k =u  u^2 −u−1=0  u=((1±(√5) )/2)  ((3/2))^k =((1±(√5) )/2)  (y/x)=(6^k /4^k )=((3/2))^k =((1±(√5) )/2)
log4x=log6y=log9(x+y)=k(say)x=4k,y=6k,x+y=9k4k+6k=9k1+6k4k=9k4k1+(32)k=(32)2k(32)2k(32)k1=0(32)k=uu2u1=0u=1±52(32)k=1±52yx=6k4k=(32)k=1±52

Leave a Reply

Your email address will not be published. Required fields are marked *