Menu Close

Suppose-you-put-3000-in-a-savings-account-with-a-5-annual-interesrate-compounded-continously-How-long-would-it-take-for-your-money-tl-double-




Question Number 125977 by liberty last updated on 16/Dec/20
 Suppose you put $3000 in a savings account  with a 5% annual interesrate , compounded  continously . How long would it take for  your money tl double ?
$$\:{Suppose}\:{you}\:{put}\:\$\mathrm{3000}\:{in}\:{a}\:{savings}\:{account} \\ $$$${with}\:{a}\:\mathrm{5\%}\:{annual}\:{interesrate}\:,\:{compounded} \\ $$$${continously}\:.\:{How}\:{long}\:{would}\:{it}\:{take}\:{for} \\ $$$${your}\:{money}\:{tl}\:{double}\:?\: \\ $$
Answered by bramlexs22 last updated on 16/Dec/20
P_n  = P_o e^(rt)   ⇔ 6000=3000.e^(t/(20))   ⇔2 = e^(t/(20))  ; (t/(20)) = ln (2)  ⇔t = 20 ln (2); t ≈ 13.86 years  20×ln 2  13.862944
$${P}_{{n}} \:=\:{P}_{{o}} {e}^{{rt}} \\ $$$$\Leftrightarrow\:\mathrm{6000}=\mathrm{3000}.{e}^{\frac{{t}}{\mathrm{20}}} \\ $$$$\Leftrightarrow\mathrm{2}\:=\:{e}^{\frac{{t}}{\mathrm{20}}} \:;\:\frac{{t}}{\mathrm{20}}\:=\:\mathrm{ln}\:\left(\mathrm{2}\right) \\ $$$$\Leftrightarrow{t}\:=\:\mathrm{20}\:\mathrm{ln}\:\left(\mathrm{2}\right);\:{t}\:\approx\:\mathrm{13}.\mathrm{86}\:{years} \\ $$$$\mathrm{20}×\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{13}.\mathrm{862944} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *