Menu Close

t-0-pi-2-sin-x-t-cos-x-2-dx-find-the-value-of-the-extermum-of-t-




Question Number 165581 by mnjuly1970 last updated on 04/Feb/22
  ϕ(t)=∫_0 ^( (π/2)) ( sin(x)+t cos(x))^( 2) dx  find  the  value of the extermum                 of   ϕ (t).
φ(t)=0π2(sin(x)+tcos(x))2dxfindthevalueoftheextermumofφ(t).
Answered by aleks041103 last updated on 04/Feb/22
sin(x)+tcos(x)=(√(1+t^2 ))sin(x+arctan(t))  ⇒ϕ(t)=∫_0 ^(π/2) ((sin^2 (x+a))/(1+t^2 ))dx=  =(1+t^2 )∫_a ^(a+π/2) sin^2 x dx , a=tan^(−1) t  ∫sin^2 x dx= ∫((1−cos(2x))/2)dx=  =(x/2)−(1/4)sin(2x)  ⇒∫_a ^(a+π/2) sin^2 x dx=(π/4)−(1/4)(sin(π+2a)−sin(2a))=  =(π/4)+sin(a)cos(a)=  =(π/4)+tan(a)cos^2 (a)=  =(π/4)+(t/(1+tan^2 (a)))=(π/4)+(t/(1+t^2 ))  ⇒ϕ(t)=(π/4)(1+t^2 )+t
sin(x)+tcos(x)=1+t2sin(x+arctan(t))φ(t)=0π/2sin2(x+a)1+t2dx==(1+t2)aa+π/2sin2xdx,a=tan1tsin2xdx=1cos(2x)2dx==x214sin(2x)aa+π/2sin2xdx=π414(sin(π+2a)sin(2a))==π4+sin(a)cos(a)==π4+tan(a)cos2(a)==π4+t1+tan2(a)=π4+t1+t2φ(t)=π4(1+t2)+t
Commented by aleks041103 last updated on 04/Feb/22
ϕ(t)=(π/4)t^2 +t+(π/4)  ϕ′=(π/2)t+1=0  ⇒t=−(2/π)  ⇒ϕ_(extr) =(π/4) (4/π^2 )−(2/π)+(π/4)=  =−(1/π)+(π/4)=((π^2 −4)/(4π))=ϕ_(extr.)
φ(t)=π4t2+t+π4φ=π2t+1=0t=2πφextr=π44π22π+π4==1π+π4=π244π=φextr.
Answered by mahdipoor last updated on 05/Feb/22
ϕ^′ (t)=lim_(k→t) ((ϕ(k)−ϕ(t))/(x−t))=  lim_(k→t) ((∫_0 ^( π/2) (k^2 −t^2 )cos^2 x+2(k−t)sinx.cosx)/(k−t))=  lim_(k→t) ∫_0 ^( π/2) (k+t)cos^2 x+2sinx.cosx =  2t∫_0 ^( π/2) cos^2 x +∫_0 ^( π/2) 2sinx.cosx=(π/2)t+1  ⇒ ϕ^′ (t)=0 ⇒ t=−(2/π)  ⇒ϕ(t)=∫ϕ^′ (t).dt=(π/4)t^2 +t+c  ⇒ϕ(0)=∫_0 ^( π/2) (sinx)^2 =(π/4) ⇒c=(π/4)  min ϕ = ϕ(−(2/π))=((π^2 −4)/(4π))
φ(t)=limktφ(k)φ(t)xt=limkt0π/2(k2t2)cos2x+2(kt)sinx.cosxkt=limkt0π/2(k+t)cos2x+2sinx.cosx=2t0π/2cos2x+0π/22sinx.cosx=π2t+1φ(t)=0t=2πφ(t)=φ(t).dt=π4t2+t+cφ(0)=0π/2(sinx)2=π4c=π4minφ=φ(2π)=π244π
Commented by aleks041103 last updated on 04/Feb/22
On the second line:  ((∫_0 ^( π/2) [(k^2 −t^2 )cos^2 x+2(k−t)sinx.cosx]dx)/(k−t))  since  ϕ(t)=∫_0 ^(π/2) (sin(x)+t cos(x))^2 dx
Onthesecondline:0π/2[(k2t2)cos2x+2(kt)sinx.cosx]dxktsinceφ(t)=0π/2(sin(x)+tcos(x))2dx
Commented by mahdipoor last updated on 04/Feb/22
thanks for your hint
thanksforyourhint
Commented by mahdipoor last updated on 05/Feb/22
bozorgvari aziz
bozorgvariaziz
Commented by mnjuly1970 last updated on 04/Feb/22
        ali bood jenabe mahdipoor.  mamnoon.
aliboodjenabemahdipoor.mamnoon.

Leave a Reply

Your email address will not be published. Required fields are marked *