Question Number 165581 by mnjuly1970 last updated on 04/Feb/22
$$ \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:{sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\:\mathrm{2}} {dx} \\ $$$${find}\:\:{the}\:\:{value}\:{of}\:{the}\:{extermum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:\:\:\varphi\:\left({t}\right). \\ $$
Answered by aleks041103 last updated on 04/Feb/22
$${sin}\left({x}\right)+{tcos}\left({x}\right)=\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{sin}\left({x}+{arctan}\left({t}\right)\right) \\ $$$$\Rightarrow\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{sin}^{\mathrm{2}} \left({x}+{a}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dx}= \\ $$$$=\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\int_{{a}} ^{{a}+\pi/\mathrm{2}} {sin}^{\mathrm{2}} {x}\:{dx}\:,\:{a}={tan}^{−\mathrm{1}} {t} \\ $$$$\int{sin}^{\mathrm{2}} {x}\:{dx}=\:\int\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}{dx}= \\ $$$$=\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{x}\right) \\ $$$$\Rightarrow\int_{{a}} ^{{a}+\pi/\mathrm{2}} {sin}^{\mathrm{2}} {x}\:{dx}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}\left({sin}\left(\pi+\mathrm{2}{a}\right)−{sin}\left(\mathrm{2}{a}\right)\right)= \\ $$$$=\frac{\pi}{\mathrm{4}}+{sin}\left({a}\right){cos}\left({a}\right)= \\ $$$$=\frac{\pi}{\mathrm{4}}+{tan}\left({a}\right){cos}^{\mathrm{2}} \left({a}\right)= \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{{t}}{\mathrm{1}+{tan}^{\mathrm{2}} \left({a}\right)}=\frac{\pi}{\mathrm{4}}+\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\varphi\left({t}\right)=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+{t} \\ $$$$ \\ $$
Commented by aleks041103 last updated on 04/Feb/22
$$\varphi\left({t}\right)=\frac{\pi}{\mathrm{4}}{t}^{\mathrm{2}} +{t}+\frac{\pi}{\mathrm{4}} \\ $$$$\varphi'=\frac{\pi}{\mathrm{2}}{t}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{t}=−\frac{\mathrm{2}}{\pi} \\ $$$$\Rightarrow\varphi_{{extr}} =\frac{\pi}{\mathrm{4}}\:\frac{\mathrm{4}}{\pi^{\mathrm{2}} }−\frac{\mathrm{2}}{\pi}+\frac{\pi}{\mathrm{4}}= \\ $$$$=−\frac{\mathrm{1}}{\pi}+\frac{\pi}{\mathrm{4}}=\frac{\pi^{\mathrm{2}} −\mathrm{4}}{\mathrm{4}\pi}=\varphi_{{extr}.} \\ $$
Answered by mahdipoor last updated on 05/Feb/22
$$\varphi^{'} \left({t}\right)=\underset{{k}\rightarrow{t}} {\mathrm{lim}}\frac{\varphi\left({k}\right)−\varphi\left({t}\right)}{{x}−{t}}= \\ $$$$\underset{{k}\rightarrow{t}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left({k}^{\mathrm{2}} −{t}^{\mathrm{2}} \right){cos}^{\mathrm{2}} {x}+\mathrm{2}\left({k}−{t}\right){sinx}.{cosx}}{{k}−{t}}= \\ $$$$\underset{{k}\rightarrow{t}} {\mathrm{lim}}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left({k}+{t}\right){cos}^{\mathrm{2}} {x}+\mathrm{2}{sinx}.{cosx}\:= \\ $$$$\mathrm{2}{t}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {cos}^{\mathrm{2}} {x}\:+\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{2}{sinx}.{cosx}=\frac{\pi}{\mathrm{2}}{t}+\mathrm{1} \\ $$$$\Rightarrow\:\varphi^{'} \left({t}\right)=\mathrm{0}\:\Rightarrow\:{t}=−\frac{\mathrm{2}}{\pi} \\ $$$$\Rightarrow\varphi\left({t}\right)=\int\varphi^{'} \left({t}\right).{dt}=\frac{\pi}{\mathrm{4}}{t}^{\mathrm{2}} +{t}+{c} \\ $$$$\Rightarrow\varphi\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left({sinx}\right)^{\mathrm{2}} =\frac{\pi}{\mathrm{4}}\:\Rightarrow{c}=\frac{\pi}{\mathrm{4}} \\ $$$${min}\:\varphi\:=\:\varphi\left(−\frac{\mathrm{2}}{\pi}\right)=\frac{\pi^{\mathrm{2}} −\mathrm{4}}{\mathrm{4}\pi} \\ $$$$ \\ $$
Commented by aleks041103 last updated on 04/Feb/22
$${On}\:{the}\:{second}\:{line}: \\ $$$$\frac{\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left[\left({k}^{\mathrm{2}} −{t}^{\mathrm{2}} \right){cos}^{\mathrm{2}} {x}+\mathrm{2}\left({k}−{t}\right){sinx}.{cosx}\right]{dx}}{{k}−{t}} \\ $$$${since} \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left({sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\mathrm{2}} {dx} \\ $$
Commented by mahdipoor last updated on 04/Feb/22
$${thanks}\:{for}\:{your}\:{hint} \\ $$
Commented by mahdipoor last updated on 05/Feb/22
$${bozorgvari}\:{aziz}\: \\ $$
Commented by mnjuly1970 last updated on 04/Feb/22
$$\:\:\:\:\:\:\:\:{ali}\:{bood}\:{jenabe}\:{mahdipoor}. \\ $$$${mamnoon}. \\ $$