t-2-1-t-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 93484 by mashallah last updated on 13/May/20 ∫t2/(1+t2)2dx= Commented by prakash jain last updated on 13/May/20 functionisintsoconstantwrtxt2(1+t2)2x+C Commented by mathmax by abdo last updated on 13/May/20 I=∫t2(1+t2)2dt⇒I=∫t2+1−1(1+t2)dt=∫dt1+t2−∫dt(1+t2)2wehave∫dt1+t2=arctan(t)+c1∫dt(1+t2)2=t=tanx∫(1+tan2x)dx(1+tan2x)2=∫cos2xdx=12∫(1+cos(2x))dx=x2+14sin(2x)+c2sin(2x)=2tanx1+tan2x=2t1+t2⇒∫dt(1+t2)2=12arctan(t)+t2(1+t2)+c2⇒I=12arctan(t)−t2(1+t2)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-159016Next Next post: Find-by-the-trapezoidal-rule-the-approximate-value-of-0-1-dx-1-x-2-Use-ordinates-spaced-at-equal-interval-of-width-h-0-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.