Menu Close

t-2-1-t-2-2-dx-




Question Number 93484 by mashallah last updated on 13/May/20
∫t^2 /(1+t^2 )^2 dx=
t2/(1+t2)2dx=
Commented by prakash jain last updated on 13/May/20
function is in t so constant wrt x  (t^2 /((1+t^2 )^2 ))x+C
functionisintsoconstantwrtxt2(1+t2)2x+C
Commented by mathmax by abdo last updated on 13/May/20
I =∫  (t^2 /((1+t^2 )^2 ))dt ⇒I =∫ ((t^2 +1−1)/((1+t^2 )))dt =∫  (dt/(1+t^2 ))−∫  (dt/((1+t^2 )^2 ))  we have ∫  (dt/(1+t^2 )) =arctan(t)+c_1   ∫   (dt/((1+t^2 )^2 )) =_(t=tanx)    ∫   (((1+tan^2 x)dx)/((1+tan^2 x)^2 ))    =∫cos^2 x dx  =(1/2)∫(1+cos(2x))dx =(x/2) +(1/4)sin(2x) +c_2   sin(2x) =((2tanx)/(1+tan^2 x)) =((2t)/(1+t^2 )) ⇒∫(dt/((1+t^2 )^2 )) =(1/2)arctan(t) +(t/(2(1+t^2 ))) +c_2   ⇒I =(1/2)arctan(t)−(t/(2(1+t^2 ))) +C
I=t2(1+t2)2dtI=t2+11(1+t2)dt=dt1+t2dt(1+t2)2wehavedt1+t2=arctan(t)+c1dt(1+t2)2=t=tanx(1+tan2x)dx(1+tan2x)2=cos2xdx=12(1+cos(2x))dx=x2+14sin(2x)+c2sin(2x)=2tanx1+tan2x=2t1+t2dt(1+t2)2=12arctan(t)+t2(1+t2)+c2I=12arctan(t)t2(1+t2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *