Menu Close

t-5-2-t-2-dt-




Question Number 120040 by bramlexs22 last updated on 28/Oct/20
 ∫ (t^5 /( (√(2+t^2 )))) dt
t52+t2dt
Answered by john santu last updated on 28/Oct/20
 let 2+t^2  = h^2  → t dt = h dh   ∫ ((t^4  tdt)/( (√(2+t^2 )))) = ∫ (((h^2 −2)^2  h dh)/h)  ∫ (h^4 −4h^2 +4) dh = (1/5)h^5 −(4/3)h^3 +4h + c  =(1/(15))(√(2+t^2 )) {3(2+t^2 )^2 −20(2+t^2 )+60 }+ c  = ((√(2+t^2 ))/(15)) { 3t^4 −8t^2 +32 } + c
let2+t2=h2tdt=hdht4tdt2+t2=(h22)2hdhh(h44h2+4)dh=15h543h3+4h+c=1152+t2{3(2+t2)220(2+t2)+60}+c=2+t215{3t48t2+32}+c
Commented by Lordose last updated on 28/Oct/20
FASTEST
Commented by bramlexs22 last updated on 29/Oct/20
waw...
waw
Answered by Lordose last updated on 28/Oct/20
set t= (√2)tanx ⇒ dt = (√2)(1+t^2 )dx  ∫ ((((√2))^6 tan^5 xsec^2 x)/( (√2)secx))dx  4(√2)∫ tan^5 xsecxdx  4(√2)∫tanxsecx(sec^2 x−1)^2 dx  u=secx ⇒ du= secxtanxdx  4(√2)∫(u^2 −1)^2 du  4(√2)∫(u^4 −2u^2 +1)du  4(√2)((u^5 /5) − ((2u^3 )/3) + u) + C  4(√2)(((sec^5 x)/5) − ((2sec^3 (x))/3) + secx) + C  x = tan^(−1) ((t/( (√2))))  I = (1/(15))(√(t^2 +2))(3t^2 −8t+32) + C
sett=2tanxdt=2(1+t2)dx(2)6tan5xsec2x2secxdx42tan5xsecxdx42tanxsecx(sec2x1)2dxu=secxdu=secxtanxdx42(u21)2du42(u42u2+1)du42(u552u33+u)+C42(sec5x52sec3(x)3+secx)+Cx=tan1(t2)I=115t2+2(3t28t+32)+C
Commented by bramlexs22 last updated on 29/Oct/20
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *