Question Number 120040 by bramlexs22 last updated on 28/Oct/20
$$\:\int\:\frac{{t}^{\mathrm{5}} }{\:\sqrt{\mathrm{2}+{t}^{\mathrm{2}} }}\:{dt}\: \\ $$
Answered by john santu last updated on 28/Oct/20
$$\:{let}\:\mathrm{2}+{t}^{\mathrm{2}} \:=\:{h}^{\mathrm{2}} \:\rightarrow\:{t}\:{dt}\:=\:{h}\:{dh}\: \\ $$$$\int\:\frac{{t}^{\mathrm{4}} \:{tdt}}{\:\sqrt{\mathrm{2}+{t}^{\mathrm{2}} }}\:=\:\int\:\frac{\left({h}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} \:{h}\:{dh}}{{h}} \\ $$$$\int\:\left({h}^{\mathrm{4}} −\mathrm{4}{h}^{\mathrm{2}} +\mathrm{4}\right)\:{dh}\:=\:\frac{\mathrm{1}}{\mathrm{5}}{h}^{\mathrm{5}} −\frac{\mathrm{4}}{\mathrm{3}}{h}^{\mathrm{3}} +\mathrm{4}{h}\:+\:{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{15}}\sqrt{\mathrm{2}+{t}^{\mathrm{2}} }\:\left\{\mathrm{3}\left(\mathrm{2}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{20}\left(\mathrm{2}+{t}^{\mathrm{2}} \right)+\mathrm{60}\:\right\}+\:{c} \\ $$$$=\:\frac{\sqrt{\mathrm{2}+{t}^{\mathrm{2}} }}{\mathrm{15}}\:\left\{\:\mathrm{3}{t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{2}} +\mathrm{32}\:\right\}\:+\:{c}\: \\ $$
Commented by Lordose last updated on 28/Oct/20
FASTEST
Commented by bramlexs22 last updated on 29/Oct/20
$${waw}… \\ $$
Answered by Lordose last updated on 28/Oct/20
$$\mathrm{set}\:\mathrm{t}=\:\sqrt{\mathrm{2}}\mathrm{tanx}\:\Rightarrow\:\mathrm{dt}\:=\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\int\:\frac{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{6}} \mathrm{tan}^{\mathrm{5}} \mathrm{xsec}^{\mathrm{2}} \mathrm{x}}{\:\sqrt{\mathrm{2}}\mathrm{secx}}\mathrm{dx} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\int\:\mathrm{tan}^{\mathrm{5}} \mathrm{xsecxdx} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\int\mathrm{tanxsecx}\left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{u}=\mathrm{secx}\:\Rightarrow\:\mathrm{du}=\:\mathrm{secxtanxdx} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\int\left(\mathrm{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \mathrm{du} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\int\left(\mathrm{u}^{\mathrm{4}} −\mathrm{2u}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{du} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\left(\frac{\mathrm{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{\mathrm{2u}^{\mathrm{3}} }{\mathrm{3}}\:+\:\mathrm{u}\right)\:+\:\mathrm{C} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\left(\frac{\mathrm{sec}^{\mathrm{5}} \mathrm{x}}{\mathrm{5}}\:−\:\frac{\mathrm{2sec}^{\mathrm{3}} \left(\mathrm{x}\right)}{\mathrm{3}}\:+\:\mathrm{secx}\right)\:+\:\mathrm{C} \\ $$$$\mathrm{x}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{t}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{15}}\sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{2}}\left(\mathrm{3t}^{\mathrm{2}} −\mathrm{8t}+\mathrm{32}\right)\:+\:\mathrm{C} \\ $$$$ \\ $$
Commented by bramlexs22 last updated on 29/Oct/20
$${yes} \\ $$