Menu Close

t-7-sin-t-7-dt-




Question Number 168291 by MikeH last updated on 07/Apr/22
∫t^7 sin(t^7 )dt
$$\int{t}^{\mathrm{7}} \mathrm{sin}\left({t}^{\mathrm{7}} \right){dt} \\ $$
Answered by Engr_Jidda last updated on 07/Apr/22
let t^7 =x then dt=7t^6 dx  ∴ ∫t^7 sin(t^7 )dt=∫7xsinx(x^(−1) )dx  =7∫sinxdx=−7cosx OR −7cos(t^7 )
$${let}\:{t}^{\mathrm{7}} ={x}\:{then}\:{dt}=\mathrm{7}{t}^{\mathrm{6}} {dx} \\ $$$$\therefore\:\int{t}^{\mathrm{7}} {sin}\left({t}^{\mathrm{7}} \right){dt}=\int\mathrm{7}{xsinx}\left({x}^{−\mathrm{1}} \right){dx} \\ $$$$=\mathrm{7}\int{sinxdx}=−\mathrm{7}{cosx}\:{OR}\:−\mathrm{7}{cos}\left({t}^{\mathrm{7}} \right) \\ $$
Answered by Florian last updated on 07/Apr/22
It′s  integral has no elementary primitive!
$${It}'{s}\:\:{integral}\:{has}\:{no}\:{elementary}\:{primitive}! \\ $$
Commented by MikeH last updated on 08/Apr/22
wow really?
$$\mathrm{wow}\:\mathrm{really}? \\ $$
Commented by Florian last updated on 08/Apr/22
Yes!
$${Yes}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *