Menu Close

tan-1-2x-x-2-1-cot-1-x-2-1-2x-2pi-3-tan-1-x-2-cot-1-x-2-5pi-8-




Question Number 117926 by bemath last updated on 14/Oct/20
tan^(−1) (((2x)/(x^2 −1))) + cot^(−1) (((x^2 −1)/(2x))) =((2π)/3)  (tan^(−1) (x))^2 +(cot^(−1) (x))^2 =((5π)/8)
tan1(2xx21)+cot1(x212x)=2π3(tan1(x))2+(cot1(x))2=5π8
Answered by TANMAY PANACEA last updated on 14/Oct/20
2)a=tan^(−1) (x)  a^2 +{cot^(−1) (tana)}^2 =((5π)/8)  a^2 +((π/2)−a)^2 =((5π)/8)  a^2 +(π^2 /(4 ))−πa+a^2 =((5π)/8)  ((8a^2 −4πa+π^2 )/4)=((5π)/8)  16a^2 −8πa+2π^2 =5π  (4a)^2 −2×4a×π+π^2 =5π−π^2   (4a−π)^2 =(5π−π^2 )  a=((π±(√((5π−π^2 )))/4)  tan^(−1) x=((π+(√(5π−π^2 )))/4)  x=tan(((π+(√(5π−π^2 )))/4))
2)a=tan1(x)a2+{cot1(tana)}2=5π8a2+(π2a)2=5π8a2+π24πa+a2=5π88a24πa+π24=5π816a28πa+2π2=5π(4a)22×4a×π+π2=5ππ2(4aπ)2=(5ππ2)a=π±(5ππ24tan1x=π+5ππ24x=tan(π+5ππ24)
Answered by TANMAY PANACEA last updated on 14/Oct/20
1)x=tana  tan^(−1) (((2tana)/(tan^2 a−1)))+tan^(−1) (((2tana)/(tan^2 a−1)))=((2π)/3)  2tan^(−1) {tan(−2a)}=((2π)/3)  −4a=((2π)/3)→a=tan^(−1) x=((−π)/6)→x=−(1/( (√3)))  tan2θ=((2tanθ)/(1−tan^2 θ))
1)x=tanatan1(2tanatan2a1)+tan1(2tanatan2a1)=2π32tan1{tan(2a)}=2π34a=2π3a=tan1x=π6x=13tan2θ=2tanθ1tan2θ
Commented by bemath last updated on 14/Oct/20
thank you sir
thankyousir
Answered by bobhans last updated on 14/Oct/20
(1)case(1) for ((2x)/(x^2 −1)) > 0 ⇒tan^(−1) (((2x)/(x^2 −1)))+cot^(−1) (((x^2 −1)/(2x)))=((2π)/3)  ⇒ 2tan^(−1) (((2x)/(x^2 −1))) = ((2π)/3) ; tan^(−1) (((2x)/(x^2 −1)))=(π/3)  ⇒((2x)/(x^2 −1)) = (√3) ; (√3) x^2 −2x−(√3)=0  ⇒ x = ((2±(√(4+12)))/(2(√3))) = ((2±4)/(2(√3)))  ⇒x = (√3) or x=−(1/( (√3)))  case(2) for ((2x)/(x^2 −1)) < 0 ⇒tan^(−1) (((2x)/(x^2 −1)))+cot^(−1) (((x^2 −1)/(2x)))=((2π)/3)  ⇒tan^(−1) (((2x)/(x^2 −1)))+π+tan^(−1) (((2x)/(x^2 −1)))=((2π)/3)  ⇒2tan^(−1) (((2x)/(x^2 −1))) = −(π/3); tan^(−1) (((2x)/(x^2 −1)))=−(π/6)  ⇒((2x)/(x^2 −1)) = −(1/( (√3))) ; x^2 +2(√3) x−1=0  ⇒x = ((−2(√3) ± (√(12+4)))/2) = ((−2(√3)±4)/2)  ⇒x = −(√3) +2 or x = −(√3)−2
(1)case(1)for2xx21>0tan1(2xx21)+cot1(x212x)=2π32tan1(2xx21)=2π3;tan1(2xx21)=π32xx21=3;3x22x3=0x=2±4+1223=2±423x=3orx=13case(2)for2xx21<0tan1(2xx21)+cot1(x212x)=2π3tan1(2xx21)+π+tan1(2xx21)=2π32tan1(2xx21)=π3;tan1(2xx21)=π62xx21=13;x2+23x1=0x=23±12+42=23±42x=3+2orx=32
Commented by bemath last updated on 14/Oct/20
gave kudos
gavekudos

Leave a Reply

Your email address will not be published. Required fields are marked *