tan-1-sin-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 64735 by mmkkmm000m last updated on 20/Jul/19 ∫tanθ/1+−sinθdθ Commented by mr W last updated on 21/Jul/19 dearsir:inQ64238iaskedifyoucoulduseasmallerfontsuchthatyourpostsbecomebetterreadableforotherpeople.itseemsthatyouwouldn′tchangethis,whatapity!that′sok,idon′tcare.butifinditveryunkindthatyoujustignoremykindrequestwithoutanyreply.ithink,beingpolitetoeachotheristhefoundationofthisforum,otherwisewhyshouldpeoplehelpotherpeople? Commented by mathmax by abdo last updated on 21/Jul/19 letI=∫tanθ1+sinθdθchangementtan(θ2)=tgiveI=∫2t1−t21+2t1+t22dt1+t2=∫4tdt(1−t2)(1+t2+2t)=−∫4t(t2−1)(t+1)2dt=−4∫4t(t−1)(t+1)3dtletdecomposeF(t)=t(t−1)(t+1)3F(t)=at−1+bt+1+c(t+1)2+d(t+1)3a=limx→1(t−1)F(t)=18d=limt→−1(t+1)3F(t)=12⇒F(t)=18(t−1)+bt+1+c(t+1)2+12(t+1)3limt→+∞tF(t)=0=a+b⇒b=−18⇒F(t)=18(t−1)−18(t+1)+c(t+1)2+12(t+1)3F(0)=0=−18−18+c+12=−14+12+c=14+c⇒c=−14⇒F(t)=18(t−1)−18(t+1)−14(t+1)2+12(t+1)3⇒∫F(t)dt=18ln∣t−1∣−18ln∣t+1∣+14(t+1)−14(t+1)2+C=18ln∣t−1t+1∣+14(t+1)−14(t+1)2+C⇒I=−12ln∣t−1t+1∣−1(t+1)+1(t+1)2+C=−12ln∣tan(θ2)−1tan(θ2)+1∣−11+tan(θ2)+1(1+tan(θ2))2+C. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-64730Next Next post: Question-130270 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.