Menu Close

tan-1-sin-d-




Question Number 64735 by mmkkmm000m last updated on 20/Jul/19
∫tanθ/1+^− sinθ dθ
tanθ/1+sinθdθ
Commented by mr W last updated on 21/Jul/19
dear sir:  in Q64238 i asked if you could use  a smaller font such that your posts  become better readable for other  people. it seems that you wouldn′t  change this, what a pity! that′s ok,  i don′t care. but i find it very unkind  that you just ignore my kind request  without any reply. i think, being polite  to each other is the foundation of  this forum, otherwise why should  people help other people?
dearsir:inQ64238iaskedifyoucoulduseasmallerfontsuchthatyourpostsbecomebetterreadableforotherpeople.itseemsthatyouwouldntchangethis,whatapity!thatsok,idontcare.butifinditveryunkindthatyoujustignoremykindrequestwithoutanyreply.ithink,beingpolitetoeachotheristhefoundationofthisforum,otherwisewhyshouldpeoplehelpotherpeople?
Commented by mathmax by abdo last updated on 21/Jul/19
let  I =∫  ((tanθ)/(1+sinθ)) dθ  changement  tan((θ/2))=t give  I =∫  (((2t)/(1−t^2 ))/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫  ((4tdt)/((1−t^2 )(1+t^2  +2t))) =−∫ ((4t)/((t^2 −1)(t+1)^2 ))dt  =−4∫  ((4t)/((t−1)(t+1)^3 ))dt  let decompose F(t) =(t/((t−1)(t+1)^3 ))  F(t) =(a/(t−1)) +(b/(t+1)) +(c/((t+1)^2 )) +(d/((t+1)^3 ))  a =lim_(x→1) (t−1)F(t) =(1/8)  d =lim_(t→−1) (t+1)^3 F(t) =(1/2) ⇒F(t) =(1/(8(t−1))) +(b/(t+1)) +(c/((t+1)^2 ))+(1/(2(t+1)^3 ))  lim_(t→+∞)  tF(t) =0 =a+b ⇒b =−(1/8) ⇒  F(t) =(1/(8(t−1))) −(1/(8(t+1))) +(c/((t+1)^2 )) +(1/(2(t+1)^3 ))  F(0) =0 =−(1/8)−(1/8) +c +(1/2) =−(1/4)+(1/2) +c =(1/4) +c ⇒c =−(1/4) ⇒  F(t) =(1/(8(t−1))) −(1/(8(t+1)))−(1/(4(t+1)^2 )) +(1/(2(t+1)^3 )) ⇒  ∫ F(t)dt =(1/8)ln∣t−1∣−(1/8)ln∣t+1∣+(1/(4(t+1)))−(1/(4(t+1)^2 )) +C  =(1/8)ln∣((t−1)/(t+1))∣ +(1/(4(t+1)))−(1/(4(t+1)^2 )) +C ⇒  I =−(1/2)ln∣((t−1)/(t+1))∣−(1/((t+1))) +(1/((t+1)^2 )) +C  =−(1/2)ln∣((tan((θ/2))−1)/(tan((θ/2))+1))∣−(1/(1+tan((θ/2)))) +(1/((1+tan((θ/2)))^2 )) +C .
letI=tanθ1+sinθdθchangementtan(θ2)=tgiveI=2t1t21+2t1+t22dt1+t2=4tdt(1t2)(1+t2+2t)=4t(t21)(t+1)2dt=44t(t1)(t+1)3dtletdecomposeF(t)=t(t1)(t+1)3F(t)=at1+bt+1+c(t+1)2+d(t+1)3a=limx1(t1)F(t)=18d=limt1(t+1)3F(t)=12F(t)=18(t1)+bt+1+c(t+1)2+12(t+1)3limt+tF(t)=0=a+bb=18F(t)=18(t1)18(t+1)+c(t+1)2+12(t+1)3F(0)=0=1818+c+12=14+12+c=14+cc=14F(t)=18(t1)18(t+1)14(t+1)2+12(t+1)3F(t)dt=18lnt118lnt+1+14(t+1)14(t+1)2+C=18lnt1t+1+14(t+1)14(t+1)2+CI=12lnt1t+11(t+1)+1(t+1)2+C=12lntan(θ2)1tan(θ2)+111+tan(θ2)+1(1+tan(θ2))2+C.

Leave a Reply

Your email address will not be published. Required fields are marked *