Menu Close

tan-1-x-1-x-1-dx-




Question Number 17506 by tawa tawa last updated on 06/Jul/17
∫ tan^(−1) ((√((x + 1)/(x − 1)))) dx
$$\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{x}\:+\:\mathrm{1}}{\mathrm{x}\:−\:\mathrm{1}}}\right)\:\mathrm{dx} \\ $$
Answered by sma3l2996 last updated on 06/Jul/17
u=tan^(−1) ((√((x+1)/(x−1))))⇒u′=((−1)/(2x(√((x−1)(x+1)))))=((−1)/(2x(√(x^2 −1))))  v′=1⇒v=x  I=∫tan^(−1) ((√((x+1)/(x−1))))dx=xtan^(−1) ((√((x+1)/(x−1))))+(1/2)∫(dx/( (√(x^2 −1))))+c  x=cosh(t)⇒dx=sinh(t)dt=(√(cosh^2 t−1))dt  dx=(√(x^2 −1))dt⇔dt=(dx/( (√(x^2 −1))))  ∫(dx/( (√(x^2 −1))))=∫dt=t+c_0 =cosh^(−1) (x)+c_0 =ln(x+(√(x^2 −1)))+c_0   I=x.tan^(−1) ((√((x+1)/(x−1))))+(1/2)ln(x+(√(x^2 −1)))+C
$${u}={tan}^{−\mathrm{1}} \left(\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}\right)\Rightarrow{u}'=\frac{−\mathrm{1}}{\mathrm{2}{x}\sqrt{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}}=\frac{−\mathrm{1}}{\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${v}'=\mathrm{1}\Rightarrow{v}={x} \\ $$$${I}=\int{tan}^{−\mathrm{1}} \left(\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}\right){dx}={xtan}^{−\mathrm{1}} \left(\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}+{c} \\ $$$${x}={cosh}\left({t}\right)\Rightarrow{dx}={sinh}\left({t}\right){dt}=\sqrt{{cosh}^{\mathrm{2}} {t}−\mathrm{1}}{dt} \\ $$$${dx}=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}{dt}\Leftrightarrow{dt}=\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}=\int{dt}={t}+{c}_{\mathrm{0}} ={cosh}^{−\mathrm{1}} \left({x}\right)+{c}_{\mathrm{0}} ={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)+{c}_{\mathrm{0}} \\ $$$${I}={x}.{tan}^{−\mathrm{1}} \left(\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)+{C} \\ $$
Commented by tawa tawa last updated on 06/Jul/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *