Question Number 192537 by cortano12 last updated on 20/May/23
$$\:\begin{cases}{\mathrm{tan}\:\left(\alpha+\mathrm{2}\beta\right)=\sqrt{\mathrm{1}+\mathrm{2k}}}\\{\mathrm{tan}\:^{\mathrm{2}} \left(\alpha+\beta\right)\left\{\mathrm{1}+\mathrm{k}\:\mathrm{tan}\:^{\mathrm{2}} \beta\right\}=\mathrm{k}+\mathrm{tan}\:^{\mathrm{2}} \beta}\end{cases} \\ $$$$\:\mathrm{Find}\:\mathrm{cot}\:\mathrm{2}\beta\:. \\ $$
Answered by a.lgnaoui last updated on 20/May/23
$$\:\:\:\:\mathrm{tan}\:\left[\left(\alpha+\beta\right)+\beta\right]=\sqrt{\mathrm{1}+\mathrm{2k}}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\bullet\:\:\:\frac{\mathrm{tan}\:\left(\alpha+\beta\right)+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\left(\alpha+\beta\right)\mathrm{tan}\:\beta}=\sqrt{\mathrm{1}+\mathrm{2k}}\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\mathrm{2}\bullet\mathrm{tan}\:^{\mathrm{2}} \left(\alpha+\beta\right)=\frac{\mathrm{k}+\mathrm{tan}\:^{\mathrm{2}} \beta}{\mathrm{1}+\mathrm{ktan}\:^{\mathrm{2}} \beta}\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$\:\:\left(\mathrm{1}\right)\Leftrightarrow\:\mathrm{tan}\:\left(\alpha+\beta\right)+\mathrm{tan}\:\beta=\sqrt{\mathrm{1}+\mathrm{2k}}\:−\mathrm{tan}\:\beta\mathrm{tan}\:\left(\alpha+\beta\right)\sqrt{\mathrm{1}+\mathrm{2k}\:}\: \\ $$$$\mathrm{tan}\:\left(\alpha+\beta\right)+\left(\sqrt{\mathrm{1}+\mathrm{2k}}\:\right)\mathrm{tan}\:\beta×\mathrm{tan}\:\left(\alpha+\beta\right) \\ $$$$=\sqrt{\mathrm{1}+\mathrm{2k}}\:−\mathrm{tan}\:\beta \\ $$$$\mathrm{tan}\:\left(\alpha+\beta\right)=\frac{\sqrt{\mathrm{1}+\mathrm{2k}}\:\:−\mathrm{tan}\:\beta}{\mathrm{1}+\mathrm{tan}\:\beta\sqrt{\mathrm{1}+\mathrm{2k}\:}}\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left(\alpha+\beta\right)=\frac{\mathrm{k}+\mathrm{tan}\:^{\mathrm{2}} \beta}{\mathrm{1}+\mathrm{ktan}\:^{\mathrm{2}} \beta}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$$\mathrm{posons}\:\:\:\boldsymbol{\mathrm{y}}=\mathrm{tan}\:\left(\boldsymbol{\alpha}+\beta\right)\:\:\:\:\boldsymbol{\mathrm{x}}=\mathrm{tan}\:\boldsymbol{\beta} \\ $$$$\:\:\:\begin{cases}{\boldsymbol{\mathrm{y}}=\frac{\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\:\:−\boldsymbol{\mathrm{x}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}}\:}\\{\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\frac{\boldsymbol{\mathrm{k}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{1}+\boldsymbol{\mathrm{kx}}^{\mathrm{2}} }}\end{cases} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)+\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}}=\frac{\boldsymbol{\mathrm{k}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{1}+\boldsymbol{\mathrm{kx}}^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:+ \\ $$$$\boldsymbol{\mathrm{kx}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{k}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{kx}}^{\mathrm{4}} −\left(\mathrm{2}\boldsymbol{\mathrm{k}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\:\right)\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} = \\ $$$$ \\ $$$$=\boldsymbol{\mathrm{kx}}^{\mathrm{4}} −\mathrm{2}\boldsymbol{\mathrm{k}}\left(\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\left(\mathrm{2}\boldsymbol{\mathrm{k}}^{\mathrm{2}} +\boldsymbol{\mathrm{k}}+\mathrm{1}\right)\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\:\:−\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:+\mathrm{2}\boldsymbol{\mathrm{k}}+\mathrm{1} \\ $$$$ \\ $$$$\:\: \\ $$$$=\boldsymbol{\mathrm{k}}+\left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)\boldsymbol{\mathrm{kx}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{kx}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:+ \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{3}} \sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\: \\ $$$$ \\ $$$$=\left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\left(\mathrm{1}+\boldsymbol{\mathrm{k}}+\mathrm{2}\boldsymbol{\mathrm{k}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{k}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{k}} \\ $$$$ \\ $$$$\left.\:\Rightarrow\left(\mathrm{1}+\boldsymbol{\mathrm{k}}\right)\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\left(\mathrm{1}+\boldsymbol{\mathrm{k}}\right)\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{2}\left(\boldsymbol{\mathrm{k}}+\mathrm{1}\right)\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\boldsymbol{\mathrm{x}}−\left(\boldsymbol{\mathrm{k}}+\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)^{\mathrm{2}} −\left[\boldsymbol{\mathrm{x}}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)−\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\left.\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)}\:+\mathrm{1}\right]=\mathrm{0} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)^{\mathrm{2}} −\left[\left(\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)−\mathrm{1}\right]^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow\boldsymbol{\mathrm{x}}\left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)=\mathrm{1}−\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\: \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1}+\boldsymbol{\mathrm{k}}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}=\sqrt{\mathrm{2}\left(\mathrm{1}+\boldsymbol{\mathrm{k}}\right)}\:\:−\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}} \\ $$$$ \\ $$$$\:\:\:\:\:\: \\ $$$$\Rightarrow\mathrm{tan}\:\boldsymbol{\beta}=\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)}\:−\sqrt{\mathrm{1}+\mathrm{2k}}\: \\ $$$$ \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{2}\boldsymbol{\beta}=\frac{\mathrm{2tan}\:\boldsymbol{\beta}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \boldsymbol{\beta}}\:\:=\frac{\mathrm{2}\left(\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)}\:−\sqrt{\mathrm{1}+\mathrm{2k}}\:\right)}{\mathrm{1}−\left[\mathrm{4k}+\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)\left(\mathrm{1}+\mathrm{2k}\right)}\right.} \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{cot}\:\boldsymbol{\beta}=\frac{\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)\left(\mathrm{1}+\mathrm{2k}\right)}\:−\left(\mathrm{4k}+\mathrm{2}\right)}{\mathrm{2}\left(\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)}\:−\sqrt{\mathrm{1}+\mathrm{2k}}\:\right)} \\ $$$$ \\ $$$$\:\:\:\mathrm{cot}\:\boldsymbol{\beta}=\frac{\left.\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)\left(\mathrm{1}+\mathrm{2k}\right.}\:\right)−\left(\mathrm{2k}+\mathrm{1}\right)}{\:\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{k}\right)}\:−\sqrt{\mathrm{1}+\mathrm{2k}}}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:=\:\:\:\frac{\left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)\left(\sqrt{\mathrm{2}\left(\mathrm{1}+\boldsymbol{\mathrm{k}}\right)}\:−\sqrt{\mathrm{2}\boldsymbol{\mathrm{k}}+\mathrm{1}}\:+\sqrt{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}}\:\right)}{\mathrm{1}} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{conclusion}}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{cot}}\:\boldsymbol{\beta}=\left(\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{k}}\right)\sqrt{\mathrm{2}\left(\mathrm{1}+\boldsymbol{\mathrm{k}}\right)} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\begin{cases}{}\\{}\end{cases} \\ $$