Question Number 54537 by hsbebeb last updated on 05/Feb/19
$${tan}^{\mathrm{2}} \mathrm{20}+{tan}^{\mathrm{2}} \mathrm{40}+{tan}^{\mathrm{2}} \mathrm{80}=\mathrm{33}\:\:\: \\ $$$$\left({please}\:{solve}\:{this}\:{and}\:{i}\:{want}\:{to}\:{know}\:\right. \\ $$$$\left.{that}\:{which}\:{standard}\:{that}\:{question}\:{belongs}?\right) \\ $$$${help}\:{needed} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
$${download}\:{this}\:{book}\:{free}\:{from}\:{website}\: \\ $$$${archive}.{org} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
$$\theta=\mathrm{20}^{{o}} \\ $$$$\mathrm{9}\theta=\pi \\ $$$${tan}\mathrm{9}\theta={tan}\pi=\mathrm{0} \\ $$$${formula}\:\:\:{tan}\left({n}\theta\right)=\frac{{s}_{\mathrm{1}} −{s}_{\mathrm{3}} +{s}_{\mathrm{5}} −{s}_{\mathrm{7}} +…}{\mathrm{1}−{s}_{\mathrm{2}} +{s}_{\mathrm{4}} −…} \\ $$$${tan}\mathrm{9}\theta=\mathrm{0}=\frac{\mathrm{9}{c}_{\mathrm{1}} {tan}\theta−\mathrm{9}{c}_{\mathrm{3}} {tan}^{\mathrm{3}} \theta+\mathrm{9}{c}_{\mathrm{5}} {tan}^{\mathrm{5}} \theta−\mathrm{9}{c}_{\mathrm{7}} {tan}^{\mathrm{7}} \theta+\mathrm{9}{c}_{\mathrm{9}} {tan}^{\mathrm{9}} \theta}{{D}_{{r}} } \\ $$$${tan}\theta={x} \\ $$$$\mathrm{9}{x}−\frac{\mathrm{9}×\mathrm{8}×\mathrm{7}}{\mathrm{3}×\mathrm{2}}{x}^{\mathrm{3}} +\frac{\mathrm{9}×\mathrm{8}×\mathrm{7}×\mathrm{6}}{\mathrm{4}×\mathrm{3}×\mathrm{2}}{x}^{\mathrm{5}} −\frac{\mathrm{9}×\mathrm{8}}{\mathrm{2}}{x}^{\mathrm{7}} +{x}^{\mathrm{9}} =\mathrm{0} \\ $$$$\mathrm{9}−\mathrm{84}{x}^{\mathrm{2}} +\mathrm{14}×\mathrm{9}{x}^{\mathrm{4}} −\mathrm{36}{x}^{\mathrm{6}} +{x}^{\mathrm{8}} =\mathrm{0} \\ $$$${roots}\:{of}\:{this}\:{eqn}\:{are}\:{tan}\theta,{tan}\mathrm{2}\theta,…\left[\theta=\mathrm{20}^{{o}} …\right] \\ $$$${y}={x}^{\mathrm{2}} \\ $$$${y}^{\mathrm{4}} −\mathrm{36}{y}^{\mathrm{2}} +\mathrm{126}{y}^{\mathrm{2}} −\mathrm{84}{y}+\mathrm{9}=\mathrm{0} \\ $$$${roots}\:{of}\:{this}\:{eqn}\:{tan}^{\mathrm{2}} \theta\:,\:{tan}^{\mathrm{2}} \mathrm{2}\theta,{tan}^{\mathrm{2}} \mathrm{3}\theta,{tan}^{\mathrm{2}} \mathrm{4}\theta \\ $$$${sum}\:{of}\:{roots}=−\left(−\mathrm{36}\right)=\mathrm{36} \\ $$$${tan}^{\mathrm{2}} \mathrm{20}+{tan}^{\mathrm{2}} \mathrm{40}+{tan}^{\mathrm{2}} \mathrm{60}+{tan}^{\mathrm{2}} \mathrm{80}=\mathrm{36} \\ $$$${so}\:{tan}^{\mathrm{2}} \mathrm{20}+{tan}^{\mathrm{2}} \mathrm{40}+{tan}^{\mathrm{2}} \mathrm{80}=\mathrm{36}−\left(\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} =\mathrm{33} \\ $$$$ \\ $$