Menu Close

tan-3-sin-d-




Question Number 129946 by bemath last updated on 21/Jan/21
 ∫ ((tan ϕ+3)/(sin ϕ)) dϕ ?
$$\:\int\:\frac{\mathrm{tan}\:\varphi+\mathrm{3}}{\mathrm{sin}\:\varphi}\:\mathrm{d}\varphi\:? \\ $$
Answered by liberty last updated on 21/Jan/21
 T = ∫ ((1/(cos ϕ)) + (3/(sin ϕ)))dϕ   T= ∫ (sec ϕ+3csc ϕ) dϕ    T = ln ∣sec ϕ+tan ϕ∣−3ln ∣cot ϕ+csc ϕ∣ + c   T= ln ∣((1+sin ϕ)/(cos ϕ))∣−3ln ∣((cos ϕ+1)/(sin ϕ))∣+c
$$\:\mathrm{T}\:=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{cos}\:\varphi}\:+\:\frac{\mathrm{3}}{\mathrm{sin}\:\varphi}\right)\mathrm{d}\varphi \\ $$$$\:\mathrm{T}=\:\int\:\left(\mathrm{sec}\:\varphi+\mathrm{3csc}\:\varphi\right)\:\mathrm{d}\varphi\: \\ $$$$\:\mathrm{T}\:=\:\mathrm{ln}\:\mid\mathrm{sec}\:\varphi+\mathrm{tan}\:\varphi\mid−\mathrm{3ln}\:\mid\mathrm{cot}\:\varphi+\mathrm{csc}\:\varphi\mid\:+\:\mathrm{c} \\ $$$$\:\mathrm{T}=\:\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{sin}\:\varphi}{\mathrm{cos}\:\varphi}\mid−\mathrm{3ln}\:\mid\frac{\mathrm{cos}\:\varphi+\mathrm{1}}{\mathrm{sin}\:\varphi}\mid+\mathrm{c} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *