Menu Close

tan-3-x-sec-x-dx-




Question Number 125889 by bramlexs22 last updated on 15/Dec/20
  ∫ ((tan^3 x)/( (√(sec x)))) dx ?
tan3xsecxdx?
Answered by bobhans last updated on 15/Dec/20
∫ ((tan x(sec^2 x−1))/( (√(sec x)))) dx =   [ sec x = u^2  ⇒tan x dx = ((2 du)/u) ]  I=∫ (((u^4 −1))/u)(((2du)/u))=2∫(u^2 −u^(−2) )du   = 2((1/3)u^3 +(1/u))+c    = ((2(√(sec^3 x)))/3) + (2/( (√(sec x)))) + c
tanx(sec2x1)secxdx=[secx=u2tanxdx=2duu]I=(u41)u(2duu)=2(u2u2)du=2(13u3+1u)+c=2sec3x3+2secx+c
Answered by Dwaipayan Shikari last updated on 15/Dec/20
∫((tanxsec^2 x)/( (√(secx))))−((tanx)/( (√(secx))))dx            secx=t^2 ⇒secx tanx=(dt/dx)  =2∫t^2 dt −∫(1/t^2 )=(2/3)t^3 +(2/t)=(2/3)(√(sec^3 x)) +(2/( (√(secx))))+C
tanxsec2xsecxtanxsecxdxsecx=t2secxtanx=dtdx=2t2dt1t2=23t3+2t=23sec3x+2secx+C

Leave a Reply

Your email address will not be published. Required fields are marked *