Menu Close

tan-6-pi-9-33tan-4-pi-9-27tan-2-pi-9-




Question Number 17420 by sushmitak last updated on 05/Jul/17
tan^6 (π/9)−33tan^4 (π/9)+27tan^2 (π/9)=?
tan6π933tan4π9+27tan2π9=?
Answered by Tinkutara last updated on 05/Jul/17
tan 3((π/9)) = (√3)  (√3) = ((3 tan (π/9) − tan^3  (π/9))/(1 − 3 tan^2  (π/9)))  3(1 + 9 tan^4  (π/9) − 6 tan^2  (π/9)) =  tan^2  (π/9) (9 + tan^4  (π/9) − 6 tan^2  (π/9))  On rearranging, we get  tan^6  (π/9) − 33 tan^4  (π/9) + 27 tan^2  (π/9) = 3
tan3(π9)=33=3tanπ9tan3π913tan2π93(1+9tan4π96tan2π9)=tan2π9(9+tan4π96tan2π9)Onrearranging,wegettan6π933tan4π9+27tan2π9=3

Leave a Reply

Your email address will not be published. Required fields are marked *