Menu Close

tan-arc-sin-x-dx-




Question Number 91004 by jagoll last updated on 27/Apr/20
∫ tan (arc sin x) dx
$$\int\:\mathrm{tan}\:\left({arc}\:\mathrm{sin}\:{x}\right)\:{dx} \\ $$
Commented by jagoll last updated on 27/Apr/20
let sin^(−1) (x) = y ⇒x = sin y  dx = cos y dy   tan (sin^(−1) (x)) = tan y   ∫ tan (y) cos (y) dy =   ∫ sin (y) dy = −cos y + c  = −(√(1−x^2 )) + c
$${let}\:\mathrm{sin}^{−\mathrm{1}} \left({x}\right)\:=\:{y}\:\Rightarrow{x}\:=\:\mathrm{sin}\:{y} \\ $$$${dx}\:=\:\mathrm{cos}\:{y}\:{dy}\: \\ $$$$\mathrm{tan}\:\left(\mathrm{sin}^{−\mathrm{1}} \left({x}\right)\right)\:=\:\mathrm{tan}\:{y}\: \\ $$$$\int\:\mathrm{tan}\:\left({y}\right)\:\mathrm{cos}\:\left({y}\right)\:{dy}\:=\: \\ $$$$\int\:\mathrm{sin}\:\left({y}\right)\:{dy}\:=\:−\mathrm{cos}\:{y}\:+\:{c} \\ $$$$=\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:+\:{c}\: \\ $$
Commented by MJS last updated on 27/Apr/20
tan arcsin x =(x/( (√(1−x^2 ))))  anyway your path is right
$$\mathrm{tan}\:\mathrm{arcsin}\:{x}\:=\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\mathrm{anyway}\:\mathrm{your}\:\mathrm{path}\:\mathrm{is}\:\mathrm{right} \\ $$
Commented by jagoll last updated on 27/Apr/20
waw you are great sir...  thank you
$${waw}\:{you}\:{are}\:{great}\:{sir}… \\ $$$${thank}\:{you}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *