Menu Close

tan-tan2-tan3-tan-tan2-1-tan-tan2-1-tan-tan2-tan3-tan3-1-tan-tan2-tan3-tan-tan2-tan3-0-3-kpi-where-k-0-1-2-3-kpi-3-tan-0-or-tan2-0-or-tan-3-0-mpi-where-m-0-1-2-3




Question Number 14330 by myintkhaing last updated on 01/Jun/17
tanθ+tan2θ=tan3θ  ((tanθ+tan2θ)/(1−tanθtan2θ))(1−tanθtan2θ)=tan3θ  tan3θ(1−tanθtan2θ)=tan3θ  tanθtan2θtan3θ 0  3θ=kπ, where k=0,1,2,3,...  θ=((kπ)/3)  tanθ=0  or  tan2θ=0 or tan 3θ = 0  θ=mπ, where m=0,1,2,3,...  2θ=nπ, where n=0,1,2,3,...  θ=((nπ)/2) but θ∉(((p+1)π)/2), p=0,1,2,3,...  The exhaustive set ={θ/θ=((kπ)/3) or θ=mπ}
$${tan}\theta+{tan}\mathrm{2}\theta={tan}\mathrm{3}\theta \\ $$$$\frac{{tan}\theta+{tan}\mathrm{2}\theta}{\mathrm{1}−{tan}\theta{tan}\mathrm{2}\theta}\left(\mathrm{1}−{tan}\theta{tan}\mathrm{2}\theta\right)={tan}\mathrm{3}\theta \\ $$$${tan}\mathrm{3}\theta\left(\mathrm{1}−{tan}\theta{tan}\mathrm{2}\theta\right)={tan}\mathrm{3}\theta \\ $$$${tan}\theta{tan}\mathrm{2}\theta{tan}\mathrm{3}\theta\:\mathrm{0} \\ $$$$\mathrm{3}\theta={k}\pi,\:{where}\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$$\theta=\frac{{k}\pi}{\mathrm{3}} \\ $$$${tan}\theta=\mathrm{0}\:\:{or}\:\:{tan}\mathrm{2}\theta=\mathrm{0}\:{or}\:{tan}\:\mathrm{3}\theta\:=\:\mathrm{0} \\ $$$$\theta={m}\pi,\:{where}\:{m}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$$\mathrm{2}\theta={n}\pi,\:{where}\:{n}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$$\theta=\frac{{n}\pi}{\mathrm{2}}\:{but}\:\theta\notin\frac{\left({p}+\mathrm{1}\right)\pi}{\mathrm{2}},\:{p}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$${The}\:{exhaustive}\:{set}\:=\left\{\theta/\theta=\frac{{k}\pi}{\mathrm{3}}\:{or}\:\theta={m}\pi\right\} \\ $$
Commented by Tinkutara last updated on 30/May/17
Thanks!
$$\mathrm{Thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *