Menu Close

tan-x-1-cos-2-x-




Question Number 89213 by cindiaulia last updated on 16/Apr/20
∫((√(tan x + 1))/(cos^2 x))
$$\int\frac{\sqrt{\mathrm{tan}\:\mathrm{x}\:+\:\mathrm{1}}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}} \\ $$
Answered by $@ty@m123 last updated on 16/Apr/20
∫(√(tan x + 1)) .sec^2 xdx  ∫(√(1+t))dt ,  t=tan x  =(2/3)(1+t)^(3/2) +C
$$\int\sqrt{\mathrm{tan}\:\mathrm{x}\:+\:\mathrm{1}}\:.\mathrm{sec}\:^{\mathrm{2}} {xdx} \\ $$$$\int\sqrt{\mathrm{1}+{t}}{dt}\:,\:\:{t}=\mathrm{tan}\:{x} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+{t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *