Menu Close

tan-x-1-Cos-x-dx-Need-help-




Question Number 25335 by mubeen897@hotmail.com last updated on 08/Dec/17
∫((tan(x))/((1+Cos(x))))dx=?  Need help??
tan(x)(1+Cos(x))dx=?Needhelp??
Answered by ajfour last updated on 08/Dec/17
I=∫((sin x)/(cos x(1+cos x)))dx  let  cos x=t   ⇒  −sin xdx=dt  ⇒ I=−∫(dt/(t(1+t))) =∫(dt/(1+t))−∫(dt/t)          =ln ∣((1+t)/t)∣+c  ⇒  I =ln ∣((1+cos x)/(cos x))∣+c .
I=sinxcosx(1+cosx)dxletcosx=tsinxdx=dtI=dtt(1+t)=dt1+tdtt=ln1+tt+cI=ln1+cosxcosx+c.
Answered by $@ty@m last updated on 08/Dec/17
=∫((sin x)/(cos x(1+cos x)))dx  =∫((−dt)/(t(1+t)))  =∫((−dt)/(t^2 +t+(1/4)−(1/4)))  =∫((−dt)/((t+(1/2))^2 −((1/2))^2 ))  =∫(dt/(((1/2))^2 −(t+(1/2))^2 ))  =(1/(2×(1/2)))ln ∣(((1/2)+t+(1/2))/((1/2)−t−(1/2)))∣  =ln ∣((t+1)/t)∣+C
=sinxcosx(1+cosx)dx=dtt(1+t)=dtt2+t+1414=dt(t+12)2(12)2=dt(12)2(t+12)2=12×12ln12+t+1212t12=lnt+1t+C

Leave a Reply

Your email address will not be published. Required fields are marked *