Menu Close

tan-x-1-tan-4-x-dx-




Question Number 98382 by bobhans last updated on 13/Jun/20
∫ tan x (√(1+tan^4  x)) dx
$$\int\:\mathrm{tan}\:\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{4}} \:\mathrm{x}}\:\mathrm{dx}\: \\ $$
Commented by john santu last updated on 13/Jun/20
set tan x = (√z) ⇒x = arc tan ((√z))  dx = (1/(2(√z))) ×(1/(1+z^2 )) dz   I = ∫(√z) (√(1+z^2 )) (1/(2(√z))) (1/(1+z^2 )) dz   I = (1/2) ∫ (dz/( (√(1+z^2 )))) = (1/2) ln(tan^2 x +(√(1+tan^4  x)) ) + C
$$\mathrm{set}\:\mathrm{tan}\:\mathrm{x}\:=\:\sqrt{\mathrm{z}}\:\Rightarrow\mathrm{x}\:=\:\mathrm{arc}\:\mathrm{tan}\:\left(\sqrt{\mathrm{z}}\right) \\ $$$$\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{z}}}\:×\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\:\mathrm{dz}\: \\ $$$$\mathrm{I}\:=\:\int\sqrt{\mathrm{z}}\:\sqrt{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{z}}}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\:\mathrm{dz}\: \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\frac{\mathrm{dz}}{\:\sqrt{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{ln}\left(\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:+\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{4}} \:\mathrm{x}}\:\right)\:+\:\mathrm{C} \\ $$
Commented by Aziztisffola last updated on 14/Jun/20
 dx=(1/(2(√z)))×(1/(1+(√z^2 )))dz=(1/(2(√z)))×(dz/(1+z))  ?
$$\:\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{z}}}×\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{z}^{\mathrm{2}} }}\mathrm{dz}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{z}}}×\frac{\mathrm{dz}}{\mathrm{1}+\mathrm{z}}\:\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *