Menu Close

tan-x-2-cosec-sin-x-prove-that-tan-2-x-2-2-5-




Question Number 43877 by peter frank last updated on 16/Sep/18
tan (x/2)=cosec −sin x prove that  tan^2 (x/2)=(-2±(√5))
$$\mathrm{tan}\:\frac{{x}}{\mathrm{2}}=\mathrm{cosec}\:−\mathrm{sin}\:{x}\:{prove}\:{that} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}=\left(-\mathrm{2}\pm\sqrt{\mathrm{5}}\right) \\ $$
Answered by ajfour last updated on 16/Sep/18
tan (x/2)=(1/(sin x))−sin x  let  tan (x/2) = t    ⇒  sin x = ((2t)/(1+t^2 ))  ⇒   t=((1+t^2 )/(2t))−((2t)/(1+t^2 ))  ⇒  (1/(2t))−(t/2) = ((2t)/(1+t^2 ))  ⇒  1−t^4  = 4t^2   or      (t^2 +2)^2  = 5     t^2  = tan^2 (x/2) = −2+(√5) .
$$\mathrm{tan}\:\frac{{x}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{sin}\:{x}}−\mathrm{sin}\:{x} \\ $$$${let}\:\:\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:=\:{t}\:\:\:\:\Rightarrow\:\:\mathrm{sin}\:{x}\:=\:\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:{t}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{2}{t}}−\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\mathrm{2}{t}}−\frac{{t}}{\mathrm{2}}\:=\:\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\mathrm{1}−{t}^{\mathrm{4}} \:=\:\mathrm{4}{t}^{\mathrm{2}} \\ $$$${or}\:\:\:\:\:\:\left({t}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \:=\:\mathrm{5} \\ $$$$\:\:\:{t}^{\mathrm{2}} \:=\:\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\:=\:−\mathrm{2}+\sqrt{\mathrm{5}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *