Menu Close

tan-x-39-3-cosx-




Question Number 123971 by Khalmohmmad last updated on 29/Nov/20
tan x=−((√(39))/3)  cosx=?
$$\mathrm{tan}\:{x}=−\frac{\sqrt{\mathrm{39}}}{\mathrm{3}} \\ $$$$\mathrm{cos}{x}=? \\ $$
Commented by mr W last updated on 29/Nov/20
tan x<0  ⇒(π/2)<x<π ⇒cos x<0  or  ⇒((3π)/2)<x<2π ⇒cos x>0  cos x=±(√(1/(1+(−((√(39))/3))^2 )))=±((√3)/4)
$$\mathrm{tan}\:{x}<\mathrm{0} \\ $$$$\Rightarrow\frac{\pi}{\mathrm{2}}<{x}<\pi\:\Rightarrow\mathrm{cos}\:{x}<\mathrm{0} \\ $$$${or} \\ $$$$\Rightarrow\frac{\mathrm{3}\pi}{\mathrm{2}}<{x}<\mathrm{2}\pi\:\Rightarrow\mathrm{cos}\:{x}>\mathrm{0} \\ $$$$\mathrm{cos}\:{x}=\pm\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\left(−\frac{\sqrt{\mathrm{39}}}{\mathrm{3}}\right)^{\mathrm{2}} }}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$
Answered by Dwaipayan Shikari last updated on 30/Nov/20
cosx=(1/( (√(1+tan^2 x))))=(1/( (√(1+((39)/9)))))=±(3/(4(√3)))=±((√3)/4)
$${cosx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {x}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{39}}{\mathrm{9}}}}=\pm\frac{\mathrm{3}}{\mathrm{4}\sqrt{\mathrm{3}}}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$
Answered by MJS_new last updated on 29/Nov/20
tan x =((sin x)/(cos x))=((√(1+cos^2  x))/(cos x)) ⇔ cos x =±(1/( (√(1+tan^2  x))))  tan x =−((√(39))/3) ⇒ cos x =±((√3)/4)
$$\mathrm{tan}\:{x}\:=\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}=\frac{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:{x}}}{\mathrm{cos}\:{x}}\:\Leftrightarrow\:\mathrm{cos}\:{x}\:=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}} \\ $$$$\mathrm{tan}\:{x}\:=−\frac{\sqrt{\mathrm{39}}}{\mathrm{3}}\:\Rightarrow\:\mathrm{cos}\:{x}\:=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *