Question Number 88339 by Rio Michael last updated on 10/Apr/20
$$\:\int\left(\:\sqrt{\mathrm{tan}\:{x}\:}\:+\:\sqrt{\mathrm{cot}\:{x}}\:\right){dx}\:=\:? \\ $$
Commented by jagoll last updated on 10/Apr/20
$$\sqrt{\mathrm{tan}\:\mathrm{x}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{tan}\:\mathrm{x}}}\:=\:\frac{\mathrm{tan}\:\mathrm{x}+\mathrm{1}}{\:\sqrt{\mathrm{tan}\:\mathrm{x}}} \\ $$$$\sqrt{\mathrm{tan}\:\mathrm{x}}\:=\:\mathrm{t}\:,\:\mathrm{tan}\:\mathrm{x}\:=\:\mathrm{t}^{\mathrm{2}} \\ $$$$\mathrm{2sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:=\:\mathrm{2t}\:\mathrm{dt} \\ $$$$\left.\mathrm{dx}\:=\:\frac{\mathrm{t}}{\mathrm{1}+\mathrm{t}^{\mathrm{4}} }\:\mathrm{dt}\:\right]\: \\ $$$$\int\:\frac{\mathrm{t}^{\mathrm{2}} +\mathrm{1}}{\mathrm{t}}×\:\frac{\mathrm{t}}{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dt}\:=\:\int\:\frac{\mathrm{t}^{\mathrm{2}} +\mathrm{1}}{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dt} \\ $$$$\mathrm{similar}\:\int\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dx} \\ $$
Commented by jagoll last updated on 10/Apr/20
$$\int\:\frac{\mathrm{t}^{\mathrm{2}} +\mathrm{1}}{\mathrm{t}^{\mathrm{2}} \left(\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)}\:\mathrm{dt}\:=\:\int\:\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }}{\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }}\:\mathrm{dt} \\ $$$$=\:\int\:\frac{\mathrm{d}\left(\mathrm{t}−\frac{\mathrm{1}}{\mathrm{t}}\right)}{\left(\mathrm{t}−\frac{\mathrm{1}}{\mathrm{t}}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{\mathrm{t}−\frac{\mathrm{1}}{\mathrm{t}}}{\:\sqrt{\mathrm{2}}}\right)\:+\:\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{tan}\:\mathrm{x}}}}{\:\sqrt{\mathrm{2}}}\right)\:+\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{1}}{\:\sqrt{\mathrm{2tan}\:\mathrm{x}}}\right)\:+\:\mathrm{c} \\ $$
Commented by Rio Michael last updated on 10/Apr/20
$$\mathrm{sir}\:,\mathrm{if}\:\:\mathrm{tan}\:{x}\:=\:{t}^{\mathrm{2}} \\ $$$$\:\Rightarrow\:\mathrm{sec}^{\mathrm{2}} {x}\:=\:\mathrm{2}{t}\:\frac{{dt}}{{dx}}\:\Rightarrow\:\:\:\mathrm{sec}^{\mathrm{2}} {x}\:{dx}\:=\:\mathrm{2}{t}\:{dt} \\ $$$$\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\:\:\mathrm{2}\:\mathrm{sec}^{\mathrm{2}} {x}\:{dx}\:=\:\mathrm{2}{t}\:{dt}?? \\ $$$$ \\ $$
Answered by TANMAY PANACEA. last updated on 10/Apr/20
$${method}−\mathrm{1} \\ $$$$\int\frac{\sqrt{{sinx}}}{\:\sqrt{{cosx}}\:}+\frac{\sqrt{{cosx}}}{\:\sqrt{{sinx}}}\:{dx} \\ $$$$\int\frac{{sinx}+{cosx}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\sqrt{\mathrm{2}{sinxcosx}}}{dx} \\ $$$$\sqrt{\mathrm{2}}\:\int\frac{{d}\left({sinx}−{cosx}\right)}{\:\sqrt{\mathrm{1}−\mathrm{1}+\mathrm{2}{sinxcosx}}}{dx} \\ $$$$\sqrt{\mathrm{2}}\:\int\frac{{d}\left({sinx}−{cosx}\right)}{\:\sqrt{\mathrm{1}−\left({sinx}−{cosx}\right)^{\mathrm{2}} }}=\sqrt{\mathrm{2}}\:{sin}^{−\mathrm{1}} \left(\frac{{sinx}−{cosx}}{\mathrm{1}}\right)+{c} \\ $$$$ \\ $$
Answered by TANMAY PANACEA. last updated on 10/Apr/20
$${method}−\mathrm{2} \\ $$$${t}^{\mathrm{2}} ={tanx} \\ $$$$\mathrm{2}{tdt}={sec}^{\mathrm{2}} {xdx} \\ $$$${dx}=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$\int\left({t}+\frac{\mathrm{1}}{{t}}\right)×\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$\mathrm{2}\int\frac{{t}\left({t}+\frac{\mathrm{1}}{{t}}\right)}{{t}^{\mathrm{2}} \left({t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)}{dt} \\ $$$$\mathrm{2}\int\frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}}{dt} \\ $$$$\mathrm{2}\int\frac{{d}\left({t}−\frac{\mathrm{1}}{{t}}\right)}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}}{dt} \\ $$$$\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\mathrm{1}}{{t}}}{\:\sqrt{\mathrm{2}}}\right)+{c}=\sqrt{\mathrm{2}}\:\boldsymbol{{tan}}^{−\mathrm{1}} \left(\frac{\sqrt{\boldsymbol{{tanx}}}\:−\sqrt{\boldsymbol{{cotx}}}}{\:\sqrt{\mathrm{2}}}\right)+\boldsymbol{{c}} \\ $$
Commented by M±th+et£s last updated on 10/Apr/20
$${nice}\:{solution}\:{sir} \\ $$
Answered by M±th+et£s last updated on 10/Apr/20
$$=\int\left(\sqrt{{tan}\left({x}\right)}\:+\sqrt{{cot}\left({x}\right)}\right)\:\frac{{tan}\left({x}\right)+{cot}\left({x}\right)}{{tan}\left({x}\right)+{cot}\left({x}\right)}{dx} \\ $$$$=\int\frac{\mathrm{1}}{{tan}\left({x}\right)+{cot}\left({x}\right)}\:\left({tan}\left({x}\right)\sqrt{{tan}\left({x}\right)}\:+\frac{\mathrm{1}}{\:\sqrt{{tan}\left({x}\right)}}\:+\:\frac{\mathrm{1}}{\:\sqrt{{cot}\left({x}\right)}}+{cot}\left({x}\right)\sqrt{{cot}\left({x}\right)}\right){dx} \\ $$$$=\int\frac{\mathrm{1}}{{tan}\left({x}\right)+{cot}\left({x}\right)}\left(\frac{{tan}^{\mathrm{2}} \left({x}\right)+\mathrm{1}}{\:\sqrt{{tan}\left({x}\right)}}+\frac{\mathrm{1}+{cot}^{\mathrm{2}} \left({x}\right)}{\:\sqrt{{cot}\left({x}\right)}}\right){dx} \\ $$$$=\int\frac{\mathrm{1}}{\mathrm{2}+{tan}\left({x}\right)−\mathrm{2}+{cot}\left({x}\right)}\left(\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\:\sqrt{{tan}\left({x}\right)}}+\frac{{csc}^{\mathrm{2}} \left({x}\right)}{\:\sqrt{{cot}\left({x}\right)}}\right){dx} \\ $$$$=\int\frac{\mathrm{6}}{\mathrm{2}+\left(\sqrt{{tan}\left({x}\right)}−\sqrt{{cot}\left({x}\right)}\right)^{\mathrm{2}} }\:\left(\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\mathrm{2}\sqrt{{tan}\left({x}\right)}}−\frac{−{csc}^{\mathrm{2}} \left({x}\right)}{\mathrm{2}\sqrt{{cot}\left({x}\right)}}\right){dx} \\ $$$$=\sqrt{\mathrm{2}}\:{tan}^{−\mathrm{1}} \left(\frac{\sqrt{{tan}\left({x}\right)}−\sqrt{{cot}\left({x}\right)}}{\mathrm{2}}\right)+{c} \\ $$