Menu Close

tan-x-cot-x-dx-




Question Number 88339 by Rio Michael last updated on 10/Apr/20
 ∫( (√(tan x )) + (√(cot x)) )dx = ?
(tanx+cotx)dx=?
Commented by jagoll last updated on 10/Apr/20
(√(tan x)) + (1/( (√(tan x)))) = ((tan x+1)/( (√(tan x))))  (√(tan x)) = t , tan x = t^2   2sec^2 x dx = 2t dt  dx = (t/(1+t^4 )) dt ]   ∫ ((t^2 +1)/t)× (t/(t^4 +1)) dt = ∫ ((t^2 +1)/(t^4 +1)) dt  similar ∫ ((x^2 +1)/(x^4 +1)) dx
tanx+1tanx=tanx+1tanxtanx=t,tanx=t22sec2xdx=2tdtdx=t1+t4dt]t2+1t×tt4+1dt=t2+1t4+1dtsimilarx2+1x4+1dx
Commented by jagoll last updated on 10/Apr/20
∫ ((t^2 +1)/(t^2 (t^2 +(1/t^2 )))) dt = ∫ ((1+(1/t^2 ))/(t^2 +(1/t^2 ))) dt  = ∫ ((d(t−(1/t)))/((t−(1/t))^2 +2))  = (1/( (√2))) arc tan (((t−(1/t))/( (√2)))) + c  = (1/( (√2))) arc tan ((((√(tan x)) −(1/( (√(tan x)))))/( (√2)))) +c  = (1/( (√2) )) arc tan (((tan x−1)/( (√(2tan x))))) + c
t2+1t2(t2+1t2)dt=1+1t2t2+1t2dt=d(t1t)(t1t)2+2=12arctan(t1t2)+c=12arctan(tanx1tanx2)+c=12arctan(tanx12tanx)+c
Commented by Rio Michael last updated on 10/Apr/20
sir ,if  tan x = t^2    ⇒ sec^2 x = 2t (dt/dx) ⇒   sec^2 x dx = 2t dt  how did you get   2 sec^2 x dx = 2t dt??
sir,iftanx=t2sec2x=2tdtdxsec2xdx=2tdthowdidyouget2sec2xdx=2tdt??
Answered by TANMAY PANACEA. last updated on 10/Apr/20
method−1  ∫((√(sinx))/( (√(cosx)) ))+((√(cosx))/( (√(sinx)))) dx  ∫((sinx+cosx)/((1/( (√2)))×(√(2sinxcosx))))dx  (√2) ∫((d(sinx−cosx))/( (√(1−1+2sinxcosx))))dx  (√2) ∫((d(sinx−cosx))/( (√(1−(sinx−cosx)^2 ))))=(√2) sin^(−1) (((sinx−cosx)/1))+c
method1sinxcosx+cosxsinxdxsinx+cosx12×2sinxcosxdx2d(sinxcosx)11+2sinxcosxdx2d(sinxcosx)1(sinxcosx)2=2sin1(sinxcosx1)+c
Answered by TANMAY PANACEA. last updated on 10/Apr/20
method−2  t^2 =tanx  2tdt=sec^2 xdx  dx=((2t)/(1+t^4 ))dt  ∫(t+(1/t))×((2t)/(1+t^4 ))dt  2∫((t(t+(1/t)))/(t^2 (t^2 +(1/t^2 ))))dt  2∫((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  2∫((d(t−(1/t)))/((t−(1/t))^2 +2))dt  2×(1/( (√2)))tan^(−1) (((t−(1/t))/( (√2))))+c=(√2) tan^(−1) ((((√(tanx)) −(√(cotx)))/( (√2))))+c
method2t2=tanx2tdt=sec2xdxdx=2t1+t4dt(t+1t)×2t1+t4dt2t(t+1t)t2(t2+1t2)dt21+1t2(t1t)2+2dt2d(t1t)(t1t)2+2dt2×12tan1(t1t2)+c=2tan1(tanxcotx2)+c
Commented by M±th+et£s last updated on 10/Apr/20
nice solution sir
nicesolutionsir
Answered by M±th+et£s last updated on 10/Apr/20
=∫((√(tan(x))) +(√(cot(x)))) ((tan(x)+cot(x))/(tan(x)+cot(x)))dx  =∫(1/(tan(x)+cot(x))) (tan(x)(√(tan(x))) +(1/( (√(tan(x))))) + (1/( (√(cot(x)))))+cot(x)(√(cot(x))))dx  =∫(1/(tan(x)+cot(x)))(((tan^2 (x)+1)/( (√(tan(x)))))+((1+cot^2 (x))/( (√(cot(x))))))dx  =∫(1/(2+tan(x)−2+cot(x)))(((sec^2 (x))/( (√(tan(x)))))+((csc^2 (x))/( (√(cot(x))))))dx  =∫(6/(2+((√(tan(x)))−(√(cot(x))))^2 )) (((sec^2 (x))/(2(√(tan(x)))))−((−csc^2 (x))/(2(√(cot(x))))))dx  =(√2) tan^(−1) ((((√(tan(x)))−(√(cot(x))))/2))+c
=(tan(x)+cot(x))tan(x)+cot(x)tan(x)+cot(x)dx=1tan(x)+cot(x)(tan(x)tan(x)+1tan(x)+1cot(x)+cot(x)cot(x))dx=1tan(x)+cot(x)(tan2(x)+1tan(x)+1+cot2(x)cot(x))dx=12+tan(x)2+cot(x)(sec2(x)tan(x)+csc2(x)cot(x))dx=62+(tan(x)cot(x))2(sec2(x)2tan(x)csc2(x)2cot(x))dx=2tan1(tan(x)cot(x)2)+c

Leave a Reply

Your email address will not be published. Required fields are marked *