Menu Close

tan-x-cot-x-dx-




Question Number 94662 by i jagooll last updated on 20/May/20
∫ (√(tan x+cot x)) dx = ?
tanx+cotxdx=?
Commented by i jagooll last updated on 20/May/20
∫ ((sec^2 x dx)/( (√(1+tan^2 x)) .(√(tan x)))) =   ∫ (du/( (√(u+u^3 ))))  , [ u = tan x ]
sec2xdx1+tan2x.tanx=duu+u3,[u=tanx]
Commented by MJS last updated on 20/May/20
(√(tan x +cot x))=((√2)/( (√(sin 2x))))  this leads to an elliptic integral
tanx+cotx=2sin2xthisleadstoanellipticintegral
Commented by i jagooll last updated on 20/May/20
not elementary calculus sir?
notelementarycalculussir?
Answered by MJS last updated on 20/May/20
∫(√(tan x +cot x))dx=(√2)∫(dx/( (√(sin 2x))))=       [t=x−(π/4) → dx=dt]  =(√2)∫(dt/( (√(cos 2t))))=(√2)∫(dx/( (√(1−2sin^2  t))))=  =(√2)F (t∣2) =(√2)F (x−(π/4)∣2) +C  search Wikipedia for elliptic integrals
tanx+cotxdx=2dxsin2x=[t=xπ4dx=dt]=2dtcos2t=2dx12sin2t==2F(t2)=2F(xπ42)+CsearchWikipediaforellipticintegrals
Commented by i jagooll last updated on 20/May/20
thank you prof
thankyouprof

Leave a Reply

Your email address will not be published. Required fields are marked *