Question Number 78575 by TawaTawa last updated on 18/Jan/20
$$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:\:\mathrm{dx} \\ $$
Answered by peter frank last updated on 18/Jan/20
$${u}=\sqrt{\mathrm{tan}\:{x}} \\ $$$${dx}=\frac{\mathrm{2}{udu}}{\mathrm{1}+{u}^{\mathrm{4}} } \\ $$$$\int\frac{\mathrm{2}{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{4}} }{du} \\ $$$$\int\frac{{u}^{\mathrm{2}} +{u}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{4}} }{du} \\ $$$$\int\frac{{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{4}} }+\int\frac{{u}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{4}} }{du} \\ $$$${I}={I}_{\mathrm{1}} +{I}_{\mathrm{2}} \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{du}={I}_{\mathrm{1}} …..\left({i}\right) \\ $$$$\int\frac{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{du}={I}_{\mathrm{2}} …..\left({ii}\right) \\ $$$${from}\:\left({i}\right) \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{du}={I}_{\mathrm{1}} \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{du}={I}_{\mathrm{1}} \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }+\mathrm{2}−\mathrm{2}}{du}={I}_{\mathrm{1}} \\ $$$${let}\:{P}=\left({u}+\frac{\mathrm{1}}{{u}}\right) \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{p}^{\mathrm{2}} −\mathrm{2}}.\frac{{dp}}{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}={I}_{\mathrm{1}} \\ $$$$\int\frac{{dp}}{{p}^{\mathrm{2}} −\mathrm{2}}={I}_{\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\left(\frac{{p}−\sqrt{\mathrm{2}}}{{p}+\sqrt{{p}}}\right)……\left({iii}\right) \\ $$$${from} \\ $$$$\int\frac{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{{u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }−\mathrm{2}+\mathrm{2}}{du}={I}_{\mathrm{2}} …..\left({ii}\right) \\ $$$${let}\:{w}=\left({u}−\frac{\mathrm{1}}{{u}}\right) \\ $$$$\int\frac{{dp}}{{w}^{\mathrm{2}} +\mathrm{2}}={I}_{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{{w}}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\left(\frac{{p}−\sqrt{\mathrm{2}}}{{p}+\sqrt{{p}}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{{w}}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$
Commented by TawaTawa last updated on 18/Jan/20
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$