Menu Close

tan-x-dx-Who-can-solve-this-problem-




Question Number 93304 by Shakhzod last updated on 12/May/20
∫(√(tan (x)))dx Who can solve this problem?
tan(x)dxWhocansolvethisproblem?
Commented by john santu last updated on 12/May/20
= −(1/( (√2) ))tanh^(−1) ((((√(tan x))+(√(cot x)))/( (√2)))) +   (1/( (√2)))tan^(−1) ((((√(tan x))−(√(cot x)))/( (√2))))+c
=12tanh1(tanx+cotx2)+12tan1(tanxcotx2)+c
Commented by i jagooll last updated on 12/May/20
cooll man ����
Commented by i jagooll last updated on 12/May/20
set u = (√(tan x)) , dx = ((2u du)/(u^4 +1))  ∫ (√(tan x)) dx = ∫ (2/(u^2 +(1/u^2 ))) du  = ∫ ((1−(1/u))/((u+(1/u))^2 −2)) du + ∫ ((1+(1/u^2 ))/((u−(1/u))^2 +2)) du  [ set u+(1/u) = tan q ], [ w=u−(1/u)]  = ∫ (1/(q^2 −2)) dq + ∫ (1/(w^2 +2)) dw   =−(1/( (√2))) tanh^(−1) ((q/( (√2)))) +(1/( (√2))) tan^(−1) ((w/( (√2)))) + c  = −(1/( (√2))) tanh^(−1) ((((√(tan x))+(√(cot x)))/( (√2))))  + (1/( (√2))) tan^(−1) ((((√(tan x))−(√(cot x)))/( (√2)))) + c
setu=tanx,dx=2uduu4+1tanxdx=2u2+1u2du=11u(u+1u)22du+1+1u2(u1u)2+2du[setu+1u=tanq],[w=u1u]=1q22dq+1w2+2dw=12tanh1(q2)+12tan1(w2)+c=12tanh1(tanx+cotx2)+12tan1(tanxcotx2)+c
Commented by  M±th+et+s last updated on 12/May/20
at end pls check for typos and thank you
atendplscheckfortyposandthankyou
Commented by mathmax by abdo last updated on 12/May/20
this integral is solved see the platform.
thisintegralissolvedseetheplatform.
Answered by prakash jain last updated on 12/May/20
Commented by Shakhzod last updated on 12/May/20
Great. Thank you so much.
Great.Thankyousomuch.
Answered by  M±th+et+s last updated on 12/May/20
=(1/( (√2)))∫((2sin(x))/( (√(sin(2x)))))  (1/( (√2)))∫((sin(x)+cos(x)+sin(x)−cos(x))/( (√(sin(2x))))).((cos(2x))/(cos(2x)))dx  =(1/( (√2)))∫((1+(√(sin(2x))))/( (√(1−sin^2 (2x))))).((cos(2x))/( (√(sin(2x)))))dx+(1/( (√2)))∫((√(1−sin(2x)))/( (√(1−sin^2 (2x))))).((cos(2x))/( (√(sin(2x)))))dx  =(1/( (√2)))∫(1/( (√(1−((√(sin(2x))))^2 )))).((cos(2x))/( (√(sin(2x)))))+(1/( (√2)))∫(1/( (√(1+((√(sin(2x))))^2 )))).((cos(2x))/( (√(sin(2x)))))dx  =(1/( (√2)))sin^(−1) ((√(sin(2x))))+(1/( (√2)))sinh^(−1) ((√(sin(2x))))+c    i can solve it with using another ways  but i dont have a time now i will post  them in anothe time
=122sin(x)sin(2x)12sin(x)+cos(x)+sin(x)cos(x)sin(2x).cos(2x)cos(2x)dx=121+sin(2x)1sin2(2x).cos(2x)sin(2x)dx+121sin(2x)1sin2(2x).cos(2x)sin(2x)dx=1211(sin(2x))2.cos(2x)sin(2x)+1211+(sin(2x))2.cos(2x)sin(2x)dx=12sin1(sin(2x))+12sinh1(sin(2x))+cicansolveitwithusinganotherwaysbutidonthaveatimenowiwillposttheminanothetime
Commented by Shakhzod last updated on 12/May/20
Thank you. I will wait you then.
Thankyou.Iwillwaityouthen.
Answered by  M±th+et+s last updated on 12/May/20
Answered by  M±th+et+s last updated on 12/May/20
Answered by  M±th+et+s last updated on 12/May/20
=(1/( (√2)))∫((2sin(x))/( (√(sin(2x)))))dx=(1/( (√2)))∫((cos(x)+sin(x)−cos(x)+sin(x))/( (√(sin(2x)))))dx  =(1/( (√2)))∫(((√(1+sin(2x)))−(√(1−sin(2x))))/( (√(sin(2x))))).((csc(2x)cot(2x))/(csc(2x)cot(2x)))dx  =(1/( (√2)))∫((((√(csc(2x)+1))−(√(csc(2x)−1))))/( (√(csc^2 (2x)−1))))cot(2x)dx  (1/( (√2)))∫((cot(2x))/( (√(csc(2x)−1))))dx−(1/( (√2)))∫((cot(2x))/( (√(csc(2x)+1))))dx  (1/( (√2)))∫(((csc(2x)cot(2x))/( (√(csc(2x)−1))))/(((√(csc2x−1)))^2 +1))dx−(1/( (√2)))∫(((csc(2x)cot(2x))/( (√(csc(2x)+1))))/(((√(csc(2x)+1)))^2 −1))  =−(1/( (√2)))tan^(−1) ((√(csc(2x)−1)))−(1/( (√2)))tanh^(−1) ((√(csc(2x)+1)))+c
=122sin(x)sin(2x)dx=12cos(x)+sin(x)cos(x)+sin(x)sin(2x)dx=121+sin(2x)1sin(2x)sin(2x).csc(2x)cot(2x)csc(2x)cot(2x)dx=12(csc(2x)+1csc(2x)1)csc2(2x)1cot(2x)dx12cot(2x)csc(2x)1dx12cot(2x)csc(2x)+1dx12csc(2x)cot(2x)csc(2x)1(csc2x1)2+1dx12csc(2x)cot(2x)csc(2x)+1(csc(2x)+1)21=12tan1(csc(2x)1)12tanh1(csc(2x)+1)+c

Leave a Reply

Your email address will not be published. Required fields are marked *