Menu Close

tan-x-pi-4-3-tan-pi-9-tan-2pi-9-tan-x-pi-4-tan-pi-9-tan-2pi-9-




Question Number 147643 by bobhans last updated on 22/Jul/21
 tan (x+(π/4))+3(tan (π/9)+tan ((2π)/9))=tan (x+(π/4))tan (π/9)tan ((2π)/9)
tan(x+π4)+3(tanπ9+tan2π9)=tan(x+π4)tanπ9tan2π9
Answered by liberty last updated on 22/Jul/21
tan (x+(π/4))−tan (x+(π/4))tan (π/9)tan ((2π)/9)=−3(tan (π/9)+tan ((2π)/9))  tan (x+(π/4))[1−tan (π/9)tan ((2π)/9)]=−3(tan (π/9)+tan ((2π)/9))  tan (x+(π/4))=−3(((tan (π/9)+tan ((2π)/9))/(1−tan (π/9)tan ((2π)/9))))  tan (x+(π/4))=−3tan (π/3)=−3(√3)  ⇒x+(π/4)=−arctan (3(√3))+nπ  ⇒x=−(π/4)+nπ−arctan (3(√3))
tan(x+π4)tan(x+π4)tanπ9tan2π9=3(tanπ9+tan2π9)tan(x+π4)[1tanπ9tan2π9]=3(tanπ9+tan2π9)tan(x+π4)=3(tanπ9+tan2π91tanπ9tan2π9)tan(x+π4)=3tanπ3=33x+π4=arctan(33)+nπx=π4+nπarctan(33)
Answered by gsk2684 last updated on 22/Jul/21
tan (x+(π/4))[1−tan (π/9)tan ((2π)/9)]=−3(tan (π/9)+tan ((2π)/9))  tan (x+(π/4))=−3(((tan (π/9)+tan ((2π)/9))/(1−tan (π/9)tan ((2π)/9))))  tan (x+(π/4))=−3 tan ((π/9)+((2π)/9))  ((tan x + 1)/(1− tan x)) =−3 tan (π/3)  ((tan x + 1)/(1− tan x)) =−3(√3)  tan x +1  = −3(√3) + 3(√3) tan x  3(√3)+1 = (3(√3) −1)tan x  (3(√3)+1)^2 ={(3(√3))^2 −1} tan x  28+6(√(3 )) = 26 tan x  ((14+3(√3))/(13))=tan x  x=tan^(−1) ((14+3(√3))/(13))
tan(x+π4)[1tanπ9tan2π9]=3(tanπ9+tan2π9)tan(x+π4)=3(tanπ9+tan2π91tanπ9tan2π9)tan(x+π4)=3tan(π9+2π9)tanx+11tanx=3tanπ3tanx+11tanx=33tanx+1=33+33tanx33+1=(331)tanx(33+1)2={(33)21}tanx28+63=26tanx14+3313=tanxx=tan114+3313

Leave a Reply

Your email address will not be published. Required fields are marked *