Question Number 94510 by i jagooll last updated on 19/May/20
$$\int\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{sin}\:{x}.\mathrm{cos}\:{x}}{dx}\: \\ $$
Commented by PRITHWISH SEN 2 last updated on 19/May/20
$$\int\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}.\sqrt{\mathrm{tanx}}}{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\:\:\mathrm{now}\:\mathrm{put}\:\mathrm{tanx}=\mathrm{t}^{\mathrm{2}} \\ $$$$\int\mathrm{2dt}=\mathrm{2}\sqrt{}\mathrm{tanx}+\mathrm{C}\:\:\mathrm{yes}\:\mathrm{sir}\:\mathrm{I}\:\mathrm{fix}\:\mathrm{it}.\mathrm{Thamk}\:\mathrm{you} \\ $$
Commented by john santu last updated on 19/May/20
$$\int\:\mathrm{2dt}\:=\:\mathrm{2t}\:+\:\mathrm{c}\:=\:\mathrm{2}\sqrt{\mathrm{tan}\:\mathrm{x}}\:+\:\mathrm{c}\: \\ $$
Commented by i jagooll last updated on 19/May/20
$$\mathrm{typo}\:\mathrm{sir}\:\mathrm{Pritwish} \\ $$$$\mathrm{2}\sqrt{\mathrm{tan}\:\mathrm{x}}\:+\:\mathrm{c}\: \\ $$