Menu Close

tan-xtan-z-3-tan-ytan-z-6-x-y-z-pi-Solve-for-x-y-and-z-




Question Number 20721 by ajfour last updated on 01/Sep/17
tan xtan z=3  tan ytan z=6  x+y+z = π  Solve for x, y, and z.
tanxtanz=3tanytanz=6x+y+z=πSolveforx,y,andz.
Answered by sma3l2996 last updated on 02/Sep/17
tan(x+y+z)=((tan(x+y)+tan(z))/(1−tan(x+y)tan(z)))=0  =((((tanx+tany)/(1−tanxtany))+tanz)/(1−((tanx+tany)/(1−tanxtany))tanz))=((tanx+tany+tanz−tanxtanytanz)/(1−(tanxtany+tanxtanz+tanytanz)))=0  tanx+tany+tanz−tanxtanztanytanz×(1/(tanz))=0  (3/(tanz))+(6/(tanz))+tanz−((18)/(tanz))=0  (1/(tanz))(tan^2 z−9)=0⇔tanz=3 or tanz=−3   z=tan^(−1) (3)+((kπ)/2)   so tanx=(3/(tanz))=(3/3)=1 or tanx=−1   x=(π/4)+((kπ)/2) and y=tan^(−1) (2)+((kπ)/2)
tan(x+y+z)=tan(x+y)+tan(z)1tan(x+y)tan(z)=0=tanx+tany1tanxtany+tanz1tanx+tany1tanxtanytanz=tanx+tany+tanztanxtanytanz1(tanxtany+tanxtanz+tanytanz)=0tanx+tany+tanztanxtanztanytanz×1tanz=03tanz+6tanz+tanz18tanz=01tanz(tan2z9)=0tanz=3ortanz=3z=tan1(3)+kπ2sotanx=3tanz=33=1ortanx=1x=π4+kπ2andy=tan1(2)+kπ2

Leave a Reply

Your email address will not be published. Required fields are marked *