Menu Close

tan193-k-cos167-




Question Number 164760 by mathlove last updated on 21/Jan/22
tan193=k  cos167=?
$${tan}\mathrm{193}={k} \\ $$$${cos}\mathrm{167}=? \\ $$
Answered by blackmamba last updated on 21/Jan/22
 tan (193°)=tan (180°+13°)= k    ⇒tan 13° =k  ⇒cos 167°=cos (180°−13°)=−cos 13°  ⇒=−(1/( (√(1+k^2 ))))
$$\:\mathrm{tan}\:\left(\mathrm{193}°\right)=\mathrm{tan}\:\left(\mathrm{180}°+\mathrm{13}°\right)=\:{k}\: \\ $$$$\:\Rightarrow\mathrm{tan}\:\mathrm{13}°\:={k} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{167}°=\mathrm{cos}\:\left(\mathrm{180}°−\mathrm{13}°\right)=−\mathrm{cos}\:\mathrm{13}° \\ $$$$\Rightarrow=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}\: \\ $$
Answered by Rasheed.Sindhi last updated on 21/Jan/22
tan193=tan(180+13)=tan13=k  ((sin13 )/(cos13 ))=k⇒sin^2 13=k^2 cos^2 13  1−cos^2 13=k^2 cos^2 13  k^2 cos^2 13+cos^2 13−1=0  cos^2 13(k^2 +1)=1  cos13=+(1/( (√(k^2 +1))))     [1st quadrant]  cos167=cos(180−13)  =−cos13=−(1/( (√(k^2 +1))))
$$\mathrm{tan193}=\mathrm{tan}\left(\mathrm{180}+\mathrm{13}\right)=\mathrm{tan13}={k} \\ $$$$\frac{\mathrm{sin13}\:}{\mathrm{cos13}\:}={k}\Rightarrow\mathrm{sin}^{\mathrm{2}} \mathrm{13}={k}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \mathrm{13} \\ $$$$\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{13}={k}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \mathrm{13} \\ $$$${k}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \mathrm{13}+\mathrm{cos}^{\mathrm{2}} \mathrm{13}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{cos}^{\mathrm{2}} \mathrm{13}\left({k}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{cos13}=+\frac{\mathrm{1}}{\:\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\:\:\:\:\:\left[\mathrm{1st}\:\mathrm{quadrant}\right] \\ $$$$\mathrm{cos167}=\mathrm{cos}\left(\mathrm{180}−\mathrm{13}\right) \\ $$$$=−\mathrm{cos13}=−\frac{\mathrm{1}}{\:\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *