Question Number 122118 by AbdullahMohammadNurusSafa last updated on 14/Nov/20
$$\frac{{tanA}}{\mathrm{1}−{cotA}}\:+\:\frac{{cotA}}{\mathrm{1}−{tanA}}\:=\:{secA}\:{cosecA}\:+\mathrm{1} \\ $$$$\boldsymbol{{Please}}\:\boldsymbol{{prove}}\:\boldsymbol{{it}}\:\boldsymbol{{for}}\:\boldsymbol{{me}}!!! \\ $$
Answered by MJS_new last updated on 14/Nov/20
$$\frac{{t}}{\mathrm{1}−\frac{\mathrm{1}}{{t}}}+\frac{\frac{\mathrm{1}}{{t}}}{\mathrm{1}−{t}}=\frac{{t}^{\mathrm{2}} }{{t}−\mathrm{1}}−\frac{\mathrm{1}}{{t}\left({t}−\mathrm{1}\right)}={t}+\frac{\mathrm{1}}{{t}}+\mathrm{1}= \\ $$$$=\frac{{s}}{{c}}+\frac{{c}}{{s}}+\mathrm{1}=\frac{{s}^{\mathrm{2}} +{c}^{\mathrm{2}} }{{sc}}+\mathrm{1}=\frac{\mathrm{1}}{{sc}}+\mathrm{1}= \\ $$$$=\mathrm{csc}\:{A}\:\mathrm{sec}\:{A}\:+\mathrm{1} \\ $$
Answered by bemath last updated on 14/Nov/20
$${LHS} \\ $$$$\:\frac{\frac{\mathrm{sin}\:{A}}{\mathrm{cos}\:{A}}}{\frac{\mathrm{sin}\:{A}−\mathrm{cos}\:{A}}{\mathrm{sin}\:{A}}}\:+\:\frac{\frac{\mathrm{cos}\:{A}}{\mathrm{sin}\:{A}}}{\frac{\mathrm{cos}\:{A}−\mathrm{sin}\:{A}}{\mathrm{cos}\:{A}}} \\ $$$$\:=\frac{\mathrm{sin}\:{A}}{\mathrm{cos}\:{A}}.\:\frac{\mathrm{sin}\:{A}}{\left(\mathrm{sin}\:{A}−\mathrm{cos}\:{A}\right)}\:+\:\frac{\mathrm{cos}\:{A}}{\mathrm{sin}\:{A}}.\:\frac{\mathrm{cos}\:{A}}{\left(\mathrm{cos}\:{A}−\mathrm{sin}\:{A}\right)}\: \\ $$$$=\:\frac{\mathrm{sin}\:^{\mathrm{2}} {A}}{\mathrm{cos}\:{A}\left(\mathrm{sin}\:{A}−\mathrm{cos}\:{A}\right)}−\frac{\mathrm{cos}\:^{\mathrm{2}} {A}}{\mathrm{sin}\:{A}\left(\mathrm{sin}\:{A}−\mathrm{cos}\:{A}\right)} \\ $$$$=\:\frac{\mathrm{sin}\:^{\mathrm{3}} {A}−\mathrm{cos}\:^{\mathrm{3}} {A}}{\mathrm{cos}\:{A}.\mathrm{sin}\:{A}\left(\mathrm{sin}\:{A}−\mathrm{cos}\:{A}\right)} \\ $$$$=\:\frac{\mathrm{sin}\:^{\mathrm{2}} {A}+\mathrm{sin}\:{A}.\mathrm{cos}\:{A}+\mathrm{cos}^{\mathrm{2}} \:{A}}{\mathrm{cos}\:{A}.\mathrm{sin}\:{A}} \\ $$$$=\:\frac{\mathrm{1}+\mathrm{sin}\:{A}.\mathrm{cos}\:{A}}{\mathrm{cos}\:{A}.\mathrm{sin}\:{A}}\:=\:\mathrm{sec}\:{A}.\mathrm{cosec}\:{A}+\:\mathrm{1} \\ $$$$ \\ $$