Menu Close

tanx-e-ipi-dx-




Question Number 100097 by Dwaipayan Shikari last updated on 24/Jun/20
∫(tanx)^e^(iπ)  dx
$$\int\left({tanx}\right)^{{e}^{{i}\pi} } {dx} \\ $$
Commented by Dwaipayan Shikari last updated on 24/Jun/20
∫(tanx)^(−1) dx  ∫cotxdx=log(sinx)+Constant{As  e^(iπ) =−1}
$$\int\left({tanx}\right)^{−\mathrm{1}} {dx} \\ $$$$\int{cotxdx}={log}\left({sinx}\right)+{Constant}\left\{{As}\:\:{e}^{{i}\pi} =−\mathrm{1}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *