Question Number 153626 by otchereabdullai@gmail.com last updated on 08/Sep/21
$$\mathrm{Ten}\:\mathrm{eggs}\:\mathrm{are}\:\mathrm{picked}\:\mathrm{at}\:\mathrm{random}\:\mathrm{without} \\ $$$$\mathrm{replacement}\:\mathrm{from}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{containing}\: \\ $$$$\mathrm{20\%}\:\mathrm{defective}\:\mathrm{eggs}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\: \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{four}\:\mathrm{defective}\:\mathrm{eggs} \\ $$
Answered by mr W last updated on 08/Sep/21
$${x}\:{defective}\:{eqqs}:\:{C}_{{x}} ^{\mathrm{10}} \mathrm{0}.\mathrm{2}^{{x}} \mathrm{0}.\mathrm{8}^{\mathrm{10}−{x}} \\ $$$${p}=\mathrm{1}−\underset{{x}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}{C}_{{x}} ^{\mathrm{10}} \mathrm{0}.\mathrm{2}^{{x}} \mathrm{0}.\mathrm{8}^{\mathrm{10}−{x}} \\ $$$$=\mathrm{1}−\mathrm{1}×\mathrm{0}.\mathrm{2}^{\mathrm{0}} ×\mathrm{0}.\mathrm{8}^{\mathrm{10}} −\mathrm{10}×\mathrm{0}.\mathrm{2}×\mathrm{0}.\mathrm{8}^{\mathrm{9}} −\mathrm{45}×\mathrm{0}.\mathrm{2}^{\mathrm{2}} ×\mathrm{0}.\mathrm{8}^{\mathrm{8}} −\mathrm{120}×\mathrm{0}.\mathrm{2}^{\mathrm{3}} ×\mathrm{0}.\mathrm{8}^{\mathrm{7}} \\ $$$$=\mathrm{0}.\mathrm{12} \\ $$
Commented by otchereabdullai@gmail.com last updated on 08/Sep/21
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{prof} \\ $$
Commented by puissant last updated on 08/Sep/21
$${Sir}\:{Mr}\:{W}\:{you}\:{are}\:{a}\:{teacher}..?? \\ $$
Commented by mr W last updated on 08/Sep/21
$${no},\:{i}'{m}\:{not}\:{a}\:{teacher}. \\ $$
Commented by puissant last updated on 08/Sep/21
$${Okey} \\ $$