Menu Close

tg-2-x-1-cos-x-1-x-




Question Number 146227 by mathdanisur last updated on 12/Jul/21
tg^2 (x) - (1/(cos(x))) = 1 ⇒ x=?
$${tg}^{\mathrm{2}} \left({x}\right)\:-\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=\:\mathrm{1}\:\Rightarrow\:{x}=? \\ $$
Answered by gsk2684 last updated on 12/Jul/21
((sin^2 x)/(cos^2 x))−(1/(cos x))=1  sin^2 x−cos x=cos^2 x  2cos^2 x+cos x−1=0  (2cos x−1)(cos x+1)=0  cos x=(1/2) or −1  x=2nΠ±(Π/3) or 2nΠ+Π where n∈Z
$$\frac{\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{cos}\:^{\mathrm{2}} {x}}−\frac{\mathrm{1}}{\mathrm{cos}\:{x}}=\mathrm{1} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{cos}\:{x}=\mathrm{cos}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{2cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2cos}\:{x}−\mathrm{1}\right)\left(\mathrm{cos}\:{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{cos}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\:{or}\:−\mathrm{1} \\ $$$${x}=\mathrm{2}{n}\Pi\pm\frac{\Pi}{\mathrm{3}}\:{or}\:\mathrm{2}{n}\Pi+\Pi\:{where}\:{n}\in{Z} \\ $$
Commented by mathdanisur last updated on 12/Jul/21
cool Ser thanks
$${cool}\:{Ser}\:{thanks} \\ $$
Answered by qaz last updated on 12/Jul/21
tan^2 x−(1/(cos x))=sec^2 x−1−sec x=1  ⇒sec^2 x−sec x−2=0  ⇒cos x=−1 or (1/2)  ⇒x=(2k+1)π or (2k±(1/3))π.....(k∈Z)
$$\mathrm{tan}^{\mathrm{2}} \mathrm{x}−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}}=\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}−\mathrm{sec}\:\mathrm{x}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sec}\:\mathrm{x}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{x}=−\mathrm{1}\:\mathrm{or}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{x}=\left(\mathrm{2k}+\mathrm{1}\right)\pi\:\mathrm{or}\:\left(\mathrm{2k}\pm\frac{\mathrm{1}}{\mathrm{3}}\right)\pi…..\left(\mathrm{k}\in\mathbb{Z}\right) \\ $$
Commented by mathdanisur last updated on 12/Jul/21
cool ser thanks
$${cool}\:{ser}\:{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *