Question Number 54102 by gunawan last updated on 29/Jan/19
$$\mathrm{the}\:\mathrm{absolute}\:\mathrm{value} \\ $$$$\int_{\mathrm{10}} ^{\mathrm{19}} \frac{\mathrm{cos}\:{x}}{\mathrm{1}+{x}^{\mathrm{8}} }\:{dx}\:\mathrm{is}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
$${from}\:{enclosed}\:{graph}\:{below}\:{it}\:{is}\:{clear}\:{that} \\ $$$$\int_{\mathrm{10}} ^{\mathrm{19}} \frac{{cosx}}{\mathrm{1}+{x}^{\mathrm{8}} }{dx}\approx\mathrm{0}\:{because}\:{in}\:{the}\:{interval}\:{of}\:{x}\:{from}\:\mathrm{10} \\ $$$${to}\:\mathrm{19}\:\:{no}\:{area}\:{bounded}\:{by}\:{the}\:{curve}… \\ $$$${comments}\:{of}\:{others}\:{experts}\:{welcomed}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
Commented by gunawan last updated on 29/Jan/19
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$$$\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{less}\:\mathrm{than}\:\mathrm{10}^{−\mathrm{6}} \\ $$$$\mathrm{but}\:\mathrm{i}\:\mathrm{known}'\mathrm{t}\:\:\mathrm{solution} \\ $$
Answered by rahul 19 last updated on 29/Jan/19
Commented by rahul 19 last updated on 29/Jan/19
Just replace sinx by cosx!
Commented by gunawan last updated on 29/Jan/19
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir} \\ $$