Question Number 111581 by mathdave last updated on 04/Sep/20
$${the}\:{age}\:{of}\:{a}\:{mother}\:{and}\:{daughter}\:{arein} \\ $$$${the}\:{ratio}\:{of}\:\mathrm{8}:\mathrm{5}.{if}\:{the}\:{age}\:{now}\:{is} \\ $$$$\mathrm{15},{what}\:{was}\:{the}\:{age}\:{of}\:{the}\:{mother} \\ $$$${six}\:{years}\:{ago}. \\ $$
Commented by Her_Majesty last updated on 04/Sep/20
$${lol}\:{you}\:{can}\:{solve}\:\int{x}^{{x}} {dx}\:{but}\:{you}\:{have}\:{to}\:{ask}\:\boldsymbol{{this}}??? \\ $$
Commented by mathdave last updated on 04/Sep/20
$${what}\:{is}\:{that}\:{to}\:{ask}\: \\ $$
Commented by bemath last updated on 04/Sep/20
$${hahahaha}..=. \\ $$
Commented by mathdave last updated on 04/Sep/20
$$\:{your}\:{lol}\:{mean}\:{that}\:\:{i}\:{can} \\ $$$${answer}\:\int{x}^{{x}} {dx}\:{but}\:{i}\:{can}\:{not}\:{answer}\:{the} \\ $$$${simple}\:{algebraic}\:\:{question}\:{i}\:{posted} \\ $$$${above}.{u}\:{are}\:{somehow}\:{derogatory}\:{me} \\ $$$${i}\:{can}\:{not}\:{take}\:{that}\:{from}\:{u} \\ $$
Commented by Her_Majesty last updated on 04/Sep/20
$${sorry}\:{it}'{s}\:{just}\:{funny}\:\boldsymbol{\mathrm{you}}\:{post}\:{questions} \\ $$$${like}\:{this}…\:{of}\:{course}\:{everybody}\:{is}\:{allowed} \\ $$$${to}\:{post}\:{any}\:{questions}\:{they}\:{like}. \\ $$
Commented by mathdave last updated on 04/Sep/20
$${did}\:{you}\:{how}\:{many}\:{question}\:{i}\:{had}\:{posted} \\ $$$${here}\:{and}\:{still}\:{solve}\:{them}\:{myself}\:{for}\:{people}\:{to}\: \\ $$$${gain}\:{from}\:{it},\:{that}\:{you}\:{are}\:{telling}\:{me} \\ $$$${some}\:{gebberish}\:{or}\:{shit}\:{this}\:{morin} \\ $$
Commented by mathdave last updated on 04/Sep/20
$${check}\:{some}\:{of}\:{my}\:{question}\:{above}\:{now} \\ $$$${to}\:{c}\:{and}\:{try}\:{them}\: \\ $$
Commented by mathdave last updated on 04/Sep/20
$${sometime}\:{i}\:{post}\:{for}\:{fun}\:{and}\:{as}\:{wel}\:{to} \\ $$$${let}\:{people}\:{gain}\:{from}\:{it}\: \\ $$
Commented by Her_Majesty last updated on 04/Sep/20
$${ok}. \\ $$$$\mathrm{1}+\mathrm{1}=? \\ $$$$\mathrm{0}×{e}^{\mathrm{37}\xi\left(\mathrm{3}\right)−\mathrm{15}{ln}\sqrt{\pi}} =? \\ $$
Commented by mathdave last updated on 04/Sep/20
$${that}\:{is}\:{your}\:{business}\:,{what}\:{ever} \\ $$
Answered by Her_Majesty last updated on 04/Sep/20
$$\frac{\mathrm{8}}{\mathrm{5}}=\frac{\mathrm{24}}{\mathrm{15}} \\ $$$$\mathrm{24}−\mathrm{6}=\mathrm{18} \\ $$