Menu Close

the-area-of-a-square-A-t-is-increased-at-a-rate-equal-to-its-perimeter-write-a-differential-equation-that-A-t-satisfy-starting-from-dA-dt-




Question Number 115706 by Rio Michael last updated on 27/Sep/20
the area of a square, A(t) is increased  at a rate equal to its perimeter  write a differential equation that A(t)  satisfy , starting from (dA/dt) =
$$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square},\:{A}\left({t}\right)\:\mathrm{is}\:\mathrm{increased} \\ $$$$\mathrm{at}\:\mathrm{a}\:\mathrm{rate}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{its}\:\mathrm{perimeter} \\ $$$$\mathrm{write}\:\mathrm{a}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{that}\:{A}\left({t}\right) \\ $$$$\mathrm{satisfy}\:,\:\mathrm{starting}\:\mathrm{from}\:\frac{{dA}}{{dt}}\:= \\ $$
Commented by Dwaipayan Shikari last updated on 27/Sep/20
(dA/dt)=p  (dA/dt)=4(√A)    ⇒(1/4)∫ (dA/( (√A)))=∫dt  (1/2)(√A) =t+C
$$\frac{\mathrm{dA}}{\mathrm{dt}}=\mathrm{p} \\ $$$$\frac{\mathrm{dA}}{\mathrm{dt}}=\mathrm{4}\sqrt{\mathrm{A}}\:\:\:\:\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}\int\:\frac{\mathrm{dA}}{\:\sqrt{\mathrm{A}}}=\int\mathrm{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{A}}\:=\mathrm{t}+\mathrm{C} \\ $$
Commented by Rio Michael last updated on 27/Sep/20
thanks
$$\mathrm{thanks} \\ $$
Commented by Dwaipayan Shikari last updated on 27/Sep/20
Amusing ,area dependent upon time. A bacteria probably
$$\mathrm{Amusing}\:,\mathrm{area}\:\mathrm{dependent}\:\mathrm{upon}\:\mathrm{time}.\:\mathrm{A}\:\mathrm{bacteria}\:\mathrm{probably} \\ $$
Answered by mr W last updated on 27/Sep/20
A=a^2   P=4a=4(√A)  (dA/dt)=cP=k(√A)
$${A}={a}^{\mathrm{2}} \\ $$$${P}=\mathrm{4}{a}=\mathrm{4}\sqrt{{A}} \\ $$$$\frac{{dA}}{{dt}}={cP}={k}\sqrt{{A}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *