Menu Close

The-barometric-pressure-p-at-an-altitude-of-h-miles-above-sea-level-satisfies-the-differential-equation-dp-dh-0-2p-If-the-pressure-at-sea-level-is-29-92-inches-of-mercury-find-the-barometric-




Question Number 127119 by liberty last updated on 27/Dec/20
The barometric pressure p at an altitude  of h miles above sea level satisfies the  differential equation (dp/dh) = −0.2p .  If the pressure at sea level is 29.92 inches  of mercury, find the barometric   preassure at 17,000 ft   (A) 56.97 in      (B) 15.71 in  (C) 7.86 in          (D) 1 in
$${The}\:{barometric}\:{pressure}\:{p}\:{at}\:{an}\:{altitude} \\ $$$${of}\:{h}\:{miles}\:{above}\:{sea}\:{level}\:{satisfies}\:{the} \\ $$$${differential}\:{equation}\:\frac{{dp}}{{dh}}\:=\:−\mathrm{0}.\mathrm{2}{p}\:. \\ $$$${If}\:{the}\:{pressure}\:{at}\:{sea}\:{level}\:{is}\:\mathrm{29}.\mathrm{92}\:{inches} \\ $$$${of}\:{mercury},\:{find}\:{the}\:{barometric}\: \\ $$$${preassure}\:{at}\:\mathrm{17},\mathrm{000}\:{ft}\: \\ $$$$\left({A}\right)\:\mathrm{56}.\mathrm{97}\:{in}\:\:\:\:\:\:\left({B}\right)\:\mathrm{15}.\mathrm{71}\:{in} \\ $$$$\left({C}\right)\:\mathrm{7}.\mathrm{86}\:{in}\:\:\:\:\:\:\:\:\:\:\left({D}\right)\:\mathrm{1}\:{in} \\ $$
Answered by benjo_mathlover last updated on 27/Dec/20
⇔ (dp/p) = −0.2 dh  ⇒ ln p = −0.2h + c   ⇒ p = λe^(−0.2h)   ⇒p=29.92e^(−0.2h)   h=17,000 ft = 3.22 miles  ⇒ p = 29.92×e^(−0.2×3.22) = 15.71 in
$$\Leftrightarrow\:\frac{{dp}}{{p}}\:=\:−\mathrm{0}.\mathrm{2}\:{dh} \\ $$$$\Rightarrow\:\mathrm{ln}\:{p}\:=\:−\mathrm{0}.\mathrm{2}{h}\:+\:{c}\: \\ $$$$\Rightarrow\:{p}\:=\:\lambda{e}^{−\mathrm{0}.\mathrm{2}{h}} \\ $$$$\Rightarrow{p}=\mathrm{29}.\mathrm{92}{e}^{−\mathrm{0}.\mathrm{2}{h}} \\ $$$${h}=\mathrm{17},\mathrm{000}\:{ft}\:=\:\mathrm{3}.\mathrm{22}\:{miles} \\ $$$$\Rightarrow\:{p}\:=\:\mathrm{29}.\mathrm{92}×{e}^{−\mathrm{0}.\mathrm{2}×\mathrm{3}.\mathrm{22}} =\:\mathrm{15}.\mathrm{71}\:{in} \\ $$$$ \\ $$
Commented by liberty last updated on 27/Dec/20
nothing correct answer ?
$${nothing}\:{correct}\:{answer}\:? \\ $$
Commented by mr W last updated on 27/Dec/20
p=29.92e^(−0.2h)   p_(h=17000ft) =29.22e^(−0.2×((17000)/(5280))) =15.71 in  ⇒answer B
$${p}=\mathrm{29}.\mathrm{92}{e}^{−\mathrm{0}.\mathrm{2}{h}} \\ $$$${p}_{{h}=\mathrm{17000}{ft}} =\mathrm{29}.\mathrm{22}{e}^{−\mathrm{0}.\mathrm{2}×\frac{\mathrm{17000}}{\mathrm{5280}}} =\mathrm{15}.\mathrm{71}\:{in} \\ $$$$\Rightarrow{answer}\:{B} \\ $$
Commented by mr W last updated on 27/Dec/20
at sea level: h=0, not h=1 mile!
$${at}\:{sea}\:{level}:\:{h}=\mathrm{0},\:{not}\:{h}=\mathrm{1}\:{mile}! \\ $$
Commented by benjo_mathlover last updated on 27/Dec/20
  ooh.. thank you sir
$$\:\:{ooh}..\:{thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *