Menu Close

The-block-Q-moves-to-the-right-with-a-constant-velocity-v-0-as-shown-in-figure-The-relative-velocity-of-body-P-with-respect-to-Q-is-assume-all-pulleys-and-strings-are-ideal-




Question Number 19362 by Tinkutara last updated on 10/Aug/17
The block Q moves to the right with a  constant velocity v_0  as shown in figure.  The relative velocity of body P with  respect to Q is (assume all pulleys and  strings are ideal)
$$\mathrm{The}\:\mathrm{block}\:{Q}\:\mathrm{moves}\:\mathrm{to}\:\mathrm{the}\:\mathrm{right}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{constant}\:\mathrm{velocity}\:{v}_{\mathrm{0}} \:\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}. \\ $$$$\mathrm{The}\:\mathrm{relative}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{body}\:{P}\:\mathrm{with} \\ $$$$\mathrm{respect}\:\mathrm{to}\:{Q}\:\mathrm{is}\:\left(\mathrm{assume}\:\mathrm{all}\:\mathrm{pulleys}\:\mathrm{and}\right. \\ $$$$\left.\mathrm{strings}\:\mathrm{are}\:\mathrm{ideal}\right) \\ $$
Commented by Tinkutara last updated on 10/Aug/17
Commented by ajfour last updated on 10/Aug/17
2x_P =3x_Q   ⇒  2v_P =3v_Q =3v_0        v_P =(3/2)v_0    ⇒  v_P −v_Q =(3/2)v_0 −v_0      v_(rel) =(v_0 /2) .
$$\mathrm{2x}_{\mathrm{P}} =\mathrm{3x}_{\mathrm{Q}} \\ $$$$\Rightarrow\:\:\mathrm{2v}_{\mathrm{P}} =\mathrm{3v}_{\mathrm{Q}} =\mathrm{3v}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\mathrm{v}_{\mathrm{P}} =\frac{\mathrm{3}}{\mathrm{2}}\mathrm{v}_{\mathrm{0}} \:\:\:\Rightarrow\:\:\mathrm{v}_{\mathrm{P}} −\mathrm{v}_{\mathrm{Q}} =\frac{\mathrm{3}}{\mathrm{2}}\mathrm{v}_{\mathrm{0}} −\mathrm{v}_{\mathrm{0}} \\ $$$$\:\:\:\mathrm{v}_{\mathrm{rel}} =\frac{\mathrm{v}_{\mathrm{0}} }{\mathrm{2}}\:. \\ $$
Commented by Tinkutara last updated on 11/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$
Commented by ajfour last updated on 10/Aug/17
towards Q.
$$\mathrm{towards}\:\mathrm{Q}. \\ $$
Commented by ajfour last updated on 11/Aug/17
let +ve direction is towards right.  v_Q =v_0   , v_P =(3/2)v_0   v_(rel)  of P with respect to Q  is = v_P −v_Q   =(3/2)v_0 −v_0 =(v_0 /2)    (+ve)  hence towards right means towards Q.
$$\mathrm{let}\:+\mathrm{ve}\:\mathrm{direction}\:\mathrm{is}\:\mathrm{towards}\:\mathrm{right}. \\ $$$$\mathrm{v}_{\mathrm{Q}} =\mathrm{v}_{\mathrm{0}} \:\:,\:\mathrm{v}_{\mathrm{P}} =\frac{\mathrm{3}}{\mathrm{2}}\mathrm{v}_{\mathrm{0}} \\ $$$$\mathrm{v}_{\mathrm{rel}} \:\mathrm{of}\:\mathrm{P}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{Q}\:\:\mathrm{is}\:=\:\mathrm{v}_{\mathrm{P}} −\mathrm{v}_{\mathrm{Q}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{v}_{\mathrm{0}} −\mathrm{v}_{\mathrm{0}} =\frac{\mathrm{v}_{\mathrm{0}} }{\mathrm{2}}\:\:\:\:\left(+\mathrm{ve}\right) \\ $$$$\mathrm{hence}\:\mathrm{towards}\:\mathrm{right}\:\mathrm{means}\:\mathrm{towards}\:\mathrm{Q}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *