Menu Close

The-characteristic-polynomial-matrices-1-2-3-4-5-6-7-8-9-is-




Question Number 54953 by gunawan last updated on 15/Feb/19
The characteristic polynomial  matrices  [(1,(−2),3),(4,5,(−6)),((−7),8,9) ]is...
Thecharacteristicpolynomialmatrices[123456789]is
Commented by maxmathsup by imad last updated on 16/Feb/19
det(A−xI) = determinant (((1−x    −2          3)),((4           5−x        −6)))                                    ∣−7        8−x          9   ∣  =(1−x)( 9(5−x)+6(8−x))−4(−18−3(8−x))−7(12−3(5−x))  =(1−x)(45−9x +48−6x) −4(−18−24+3x)−7(12−15 +3x)  =(1−x)(93 −15x) −4(−42+3x) −7(−3 +3x)  =93−15x −93x +15x^2   + 168 −12x +21 −21x  =15x^2    −(93+27)x  +93 +168 +21  =25x^2  −120 x   + 114 +168 =25x^2 −120x  +282
det(AxI)=|1x2345x6|78x9=(1x)(9(5x)+6(8x))4(183(8x))7(123(5x))=(1x)(459x+486x)4(1824+3x)7(1215+3x)=(1x)(9315x)4(42+3x)7(3+3x)=9315x93x+15x2+16812x+2121x=15x2(93+27)x+93+168+21=25x2120x+114+168=25x2120x+282
Answered by kaivan.ahmadi last updated on 15/Feb/19
denomiate this matrices by A.  f(x)=det(A−xI)= determinant (((1−x    −2           3   )),((4          5−x     −6)),((−7       8        9−x)))  2R_1 +R_2  and sarrus rule   determinant (((1−x     −2            3)),((6−2x    1−x       0)),((−7          8        9−x))) determinant (((1−x    −2            3)),((6−2x    1−x      0)),((−7        8          9−x)))=  [(1−x)^2 (9−x)+24(6−2x)]−[−21(1−x)−2(6−2x)(9−x)]=  [(1−2x+x^2 )(9−x)+144−48x]−[21+21x−2(54−6x−18x+2x^2 ]=  [9−x−18x+2x^2 +9x^2 −x^3 +144−48x]−[21+21x−108+48x−4x^2 ]=  [−x^3 +11x^2 −67x+153]−[−4x^2 +69x−87]=  −x^3 +15x^2 −136x+240
denomiatethismatricesbyA.f(x)=det(AxI)=|1x2345x6789x|2R1+R2andsarrusrule|1x2362x1x0789x||1x2362x1x0789x|=[(1x)2(9x)+24(62x)][21(1x)2(62x)(9x)]=[(12x+x2)(9x)+14448x][21+21x2(546x18x+2x2]=[9x18x+2x2+9x2x3+14448x][21+21x108+48x4x2]=[x3+11x267x+153][4x2+69x87]=x3+15x2136x+240

Leave a Reply

Your email address will not be published. Required fields are marked *