Menu Close

The-circle-x-2-y-2-2x-4y-20-0-is-inscribed-in-a-square-One-vertex-of-the-square-is-4-7-Find-the-coordinates-of-the-other-vertices-




Question Number 174185 by nadovic last updated on 26/Jul/22
The circle x^2 +y^2 −2x−4y−20=0 is  inscribed in a square. One vertex  of the square is (−4, 7). Find the  coordinates of the other vertices.
Thecirclex2+y22x4y20=0isinscribedinasquare.Onevertexofthesquareis(4,7).Findthecoordinatesoftheothervertices.
Answered by Cesar1994 last updated on 26/Jul/22
      x^2 +y^2 −2x−4y−20=0 ⇔ (x−1)^2  +(y−2)^2 =20+1+4                                                      ⇔ (x−1)^2  +(y−2)^2 =25  the circle′s center is (1, 2)  (((−3−7)/(6−(−4))))(((−3−7)/(−4−6)))=((−10)/(10))(((−10)/(−10)))=−1  the diametrically oposite vertex to A(−4,7) is B(1+5, 2−5)=B(6,−3)  the others vertices are C(1+5, 2+5)=C(6,7) and D(1−5,2−5)=D(−4,−3)  evaluating each point in (1) it is verified that they are on the circumference  then prove that the diagonals AB and CD are perpendiculars one to the other  (((−3−7)/(6−(−4))))(((−3−7)/(−4−6)))=((−10)/(10))(((−10)/(−10)))=−1  ∴ the ABCD is rhombus  then side AC is horizontal and side BC is vertical side, so they are perpendicular  ∴ ABCD is a square ■
x2+y22x4y20=0(x1)2+(y2)2=20+1+4(x1)2+(y2)2=25thecirclescenteris(1,2)(376(4))(3746)=1010(1010)=1thediametricallyopositevertextoA(4,7)isB(1+5,25)=B(6,3)theothersverticesareC(1+5,2+5)=C(6,7)andD(15,25)=D(4,3)evaluatingeachpointin(1)itisverifiedthattheyareonthecircumferencethenprovethatthediagonalsABandCDareperpendicularsonetotheother(376(4))(3746)=1010(1010)=1theABCDisrhombusthensideACishorizontalandsideBCisverticalside,sotheyareperpendicularABCDisasquare◼

Leave a Reply

Your email address will not be published. Required fields are marked *