Question Number 43531 by pieroo last updated on 11/Sep/18
$$\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circular}\:\mathrm{track}\:\mathrm{is}\:\mathrm{9}\:\mathrm{km}.\:\mathrm{A}\:\mathrm{cyclist} \\ $$$$\mathrm{rides}\:\mathrm{round}\:\mathrm{it}\:\mathrm{a}\:\mathrm{number}\:\mathrm{of}\:\mathrm{times}\:\mathrm{and}\:\mathrm{stops}\:\mathrm{after} \\ $$$$\mathrm{covering}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{302}\:\mathrm{km}.\:\mathrm{How}\:\mathrm{far}\:\mathrm{is}\:\mathrm{the}\:\mathrm{cyclist} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{point}?\:\left[\mathrm{take}\:\Pi=\frac{\mathrm{22}}{\mathrm{7}}\right] \\ $$
Commented by pieroo last updated on 12/Sep/18
$$\mathrm{I}\:\mathrm{can}\:\mathrm{hardly}\:\mathrm{interprete}\:\mathrm{the}\:\mathrm{solution}.\:\mathrm{But}\:\mathrm{thanks}\:\mathrm{anyway} \\ $$
Answered by MrW3 last updated on 11/Sep/18
$$\mathrm{302}\:{mod}\:\mathrm{9}\:=\:\mathrm{5}\:{km}\:{or}\:−\mathrm{4}\:{km} \\ $$$$\mathrm{2}\pi{R}=\mathrm{9} \\ $$$$\Rightarrow{R}=\frac{\mathrm{9}}{\mathrm{2}×\frac{\mathrm{22}}{\mathrm{7}}}=\frac{\mathrm{63}}{\mathrm{44}}\:{km} \\ $$$$\theta{R}=\mathrm{4} \\ $$$$\Rightarrow\theta=\frac{\mathrm{4}}{{R}}=\frac{\mathrm{176}}{\mathrm{63}}\:{rad}=\mathrm{160}° \\ $$$${L}=\mathrm{2}{R}\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}×\frac{\mathrm{63}}{\mathrm{44}}×\mathrm{sin}\:\mathrm{80}°=\mathrm{2}.\mathrm{82}\:{km} \\ $$$$\Rightarrow{the}\:{cyclist}\:{is}\:\mathrm{2}.\mathrm{82}\:{km}\:{far}\:{from} \\ $$$${starting}\:{point}. \\ $$
Commented by MrW3 last updated on 12/Sep/18
Commented by MrW3 last updated on 12/Sep/18
$${A}={starting}\:{point} \\ $$$${B}={finish}\:{point} \\ $$$${L}=\overset{\_\_} {{AB}}={distance}\:{btw}.\:{A}\:{and}\:{B} \\ $$$${with}\:\overset{\frown} {{AB}}=\mathrm{4}\:{km} \\ $$
Commented by pieroo last updated on 12/Sep/18
$$\mathrm{yea}\:\mathrm{its}\:\mathrm{clear}\:\mathrm{now}.\:\mathrm{thanks}\:\mathrm{very}\:\mathrm{much} \\ $$