Menu Close

the-circumference-of-a-circular-track-is-9-km-A-cyclist-rides-round-it-a-number-of-times-and-stops-after-covering-a-distance-of-302-km-How-far-is-the-cyclist-from-the-starting-point-take-22-7




Question Number 43531 by pieroo last updated on 11/Sep/18
the circumference of a circular track is 9 km. A cyclist  rides round it a number of times and stops after  covering a distance of 302 km. How far is the cyclist  from the starting point? [take Π=((22)/7)]
$$\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circular}\:\mathrm{track}\:\mathrm{is}\:\mathrm{9}\:\mathrm{km}.\:\mathrm{A}\:\mathrm{cyclist} \\ $$$$\mathrm{rides}\:\mathrm{round}\:\mathrm{it}\:\mathrm{a}\:\mathrm{number}\:\mathrm{of}\:\mathrm{times}\:\mathrm{and}\:\mathrm{stops}\:\mathrm{after} \\ $$$$\mathrm{covering}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{302}\:\mathrm{km}.\:\mathrm{How}\:\mathrm{far}\:\mathrm{is}\:\mathrm{the}\:\mathrm{cyclist} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{point}?\:\left[\mathrm{take}\:\Pi=\frac{\mathrm{22}}{\mathrm{7}}\right] \\ $$
Commented by pieroo last updated on 12/Sep/18
I can hardly interprete the solution. But thanks anyway
$$\mathrm{I}\:\mathrm{can}\:\mathrm{hardly}\:\mathrm{interprete}\:\mathrm{the}\:\mathrm{solution}.\:\mathrm{But}\:\mathrm{thanks}\:\mathrm{anyway} \\ $$
Answered by MrW3 last updated on 11/Sep/18
302 mod 9 = 5 km or −4 km  2πR=9  ⇒R=(9/(2×((22)/7)))=((63)/(44)) km  θR=4  ⇒θ=(4/R)=((176)/(63)) rad=160°  L=2Rsin (θ/2)=2×((63)/(44))×sin 80°=2.82 km  ⇒the cyclist is 2.82 km far from  starting point.
$$\mathrm{302}\:{mod}\:\mathrm{9}\:=\:\mathrm{5}\:{km}\:{or}\:−\mathrm{4}\:{km} \\ $$$$\mathrm{2}\pi{R}=\mathrm{9} \\ $$$$\Rightarrow{R}=\frac{\mathrm{9}}{\mathrm{2}×\frac{\mathrm{22}}{\mathrm{7}}}=\frac{\mathrm{63}}{\mathrm{44}}\:{km} \\ $$$$\theta{R}=\mathrm{4} \\ $$$$\Rightarrow\theta=\frac{\mathrm{4}}{{R}}=\frac{\mathrm{176}}{\mathrm{63}}\:{rad}=\mathrm{160}° \\ $$$${L}=\mathrm{2}{R}\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}×\frac{\mathrm{63}}{\mathrm{44}}×\mathrm{sin}\:\mathrm{80}°=\mathrm{2}.\mathrm{82}\:{km} \\ $$$$\Rightarrow{the}\:{cyclist}\:{is}\:\mathrm{2}.\mathrm{82}\:{km}\:{far}\:{from} \\ $$$${starting}\:{point}. \\ $$
Commented by MrW3 last updated on 12/Sep/18
Commented by MrW3 last updated on 12/Sep/18
A=starting point  B=finish point  L=AB^(__) =distance btw. A and B  with AB^(⌢) =4 km
$${A}={starting}\:{point} \\ $$$${B}={finish}\:{point} \\ $$$${L}=\overset{\_\_} {{AB}}={distance}\:{btw}.\:{A}\:{and}\:{B} \\ $$$${with}\:\overset{\frown} {{AB}}=\mathrm{4}\:{km} \\ $$
Commented by pieroo last updated on 12/Sep/18
yea its clear now. thanks very much
$$\mathrm{yea}\:\mathrm{its}\:\mathrm{clear}\:\mathrm{now}.\:\mathrm{thanks}\:\mathrm{very}\:\mathrm{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *