Menu Close

The-complete-solution-of-the-equation-sin-2x-12-sin-x-cos-x-12-0-is-given-by-1-x-2npi-pi-2-2n-1-pi-4-n-Z-2-x-npi-pi-2-2n-1-pi-n-Z-3-x-2npi-pi-2-2n-1-pi-n-




Question Number 18456 by Tinkutara last updated on 21/Jul/17
The complete solution of the equation  sin 2x − 12(sin x − cos x) + 12 = 0 is  given by  (1) x = 2nπ + (π/2), (2n − 1)(π/4), n ∈ Z  (2) x = nπ + (π/2), (2n + 1)π, n ∈ Z  (3) x = 2nπ + (π/2), (2n + 1)π, n ∈ Z  (4) x = nπ + (π/2), (2n − 1)π, n ∈ Z
Thecompletesolutionoftheequationsin2x12(sinxcosx)+12=0isgivenby(1)x=2nπ+π2,(2n1)π4,nZ(2)x=nπ+π2,(2n+1)π,nZ(3)x=2nπ+π2,(2n+1)π,nZ(4)x=nπ+π2,(2n1)π,nZ
Answered by Tinkutara last updated on 30/Jul/17
sin 2x = 1 − (sin x − cos x)^2  = 1 − t^2   t^2  + 12t − 13 = 0 ⇒ cos x − sin x = −1  ⇒ cos (x + (π/4)) = −1  ⇒ x = 2nπ + (π/2), 2nπ − π
sin2x=1(sinxcosx)2=1t2t2+12t13=0cosxsinx=1cos(x+π4)=1x=2nπ+π2,2nππ

Leave a Reply

Your email address will not be published. Required fields are marked *