Menu Close

The-coordinates-of-two-points-A-amp-B-are-0-8-and-9-4-respectively-The-point-P-with-coordinate-p-0-lies-on-the-x-axis-where-0-lt-p-lt-9-Let-s-denotes-the-sum-of-the-length-of-two-segments-PA




Question Number 102804 by bramlex last updated on 11/Jul/20
The coordinates of two points A  & B are (0,8) and (9,4)  respectively. The point P with  coordinate (p,0) lies on the  x−axis where 0<p<9. Let s  denotes the sum of the length of  two segments PA and PB . by  expressing s in terms of p  otherwise, show that (ds/dp) =  (p/( (√(64+p^2 )))) − ((9−p)/( (√(16+(9−p)^2 ))))
$$\mathrm{The}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{two}\:\mathrm{points}\:\mathrm{A} \\ $$$$\&\:\mathrm{B}\:\mathrm{are}\:\left(\mathrm{0},\mathrm{8}\right)\:\mathrm{and}\:\left(\mathrm{9},\mathrm{4}\right) \\ $$$$\mathrm{respectively}.\:\mathrm{The}\:\mathrm{point}\:\mathrm{P}\:\mathrm{with} \\ $$$$\mathrm{coordinate}\:\left(\mathrm{p},\mathrm{0}\right)\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{x}−\mathrm{axis}\:\mathrm{where}\:\mathrm{0}<\mathrm{p}<\mathrm{9}.\:\mathrm{Let}\:\mathrm{s} \\ $$$$\mathrm{denotes}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of} \\ $$$$\mathrm{two}\:\mathrm{segments}\:\mathrm{PA}\:\mathrm{and}\:\mathrm{PB}\:.\:\mathrm{by} \\ $$$$\mathrm{expressing}\:\mathrm{s}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{p} \\ $$$$\mathrm{otherwise},\:\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{ds}}{\mathrm{dp}}\:= \\ $$$$\frac{\mathrm{p}}{\:\sqrt{\mathrm{64}+\mathrm{p}^{\mathrm{2}} }}\:−\:\frac{\mathrm{9}−\mathrm{p}}{\:\sqrt{\mathrm{16}+\left(\mathrm{9}−\mathrm{p}\right)^{\mathrm{2}} }} \\ $$
Answered by bemath last updated on 11/Jul/20
s = PA +PB = (√(p^2 +64))  +(√((9−p)^2 +16))  (ds/dp) = ((2p)/(2(√(64+p^2 )))) +  ((2(9−p)(−1))/(2(√(16+(9−p)^2 )))) =  (p/( (√(64+p^2 ))))−(((9−p))/( (√(16+(9−p)^2 )))) □
$${s}\:=\:{PA}\:+{PB}\:=\:\sqrt{{p}^{\mathrm{2}} +\mathrm{64}} \\ $$$$+\sqrt{\left(\mathrm{9}−{p}\right)^{\mathrm{2}} +\mathrm{16}} \\ $$$$\frac{{ds}}{{dp}}\:=\:\frac{\mathrm{2}{p}}{\mathrm{2}\sqrt{\mathrm{64}+{p}^{\mathrm{2}} }}\:+ \\ $$$$\frac{\mathrm{2}\left(\mathrm{9}−{p}\right)\left(−\mathrm{1}\right)}{\mathrm{2}\sqrt{\mathrm{16}+\left(\mathrm{9}−{p}\right)^{\mathrm{2}} }}\:= \\ $$$$\frac{{p}}{\:\sqrt{\mathrm{64}+{p}^{\mathrm{2}} }}−\frac{\left(\mathrm{9}−{p}\right)}{\:\sqrt{\mathrm{16}+\left(\mathrm{9}−{p}\right)^{\mathrm{2}} }}\:\square \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *