Menu Close

The-diagonals-of-a-trapezoid-ABCD-intersect-at-point-Q-lies-between-the-parallel-line-BC-and-AD-such-that-AQD-CQB-line-CD-separates-points-P-and-Q-Prove-that-BQP-DAQ-




Question Number 104221 by bemath last updated on 20/Jul/20
The diagonals of a  trapezoid ABCD intersect  at point Q lies between the  parallel line BC and AD  such that ∠AQD = ∠CQB ,  line CD separates points P  and Q . Prove that  ∠BQP = ∠DAQ
$${The}\:{diagonals}\:{of}\:{a} \\ $$$${trapezoid}\:{ABCD}\:{intersect} \\ $$$${at}\:{point}\:{Q}\:{lies}\:{between}\:{the} \\ $$$${parallel}\:{line}\:{BC}\:{and}\:{AD} \\ $$$${such}\:{that}\:\angle{AQD}\:=\:\angle{CQB}\:, \\ $$$${line}\:{CD}\:{separates}\:{points}\:{P} \\ $$$${and}\:{Q}\:.\:{Prove}\:{that} \\ $$$$\angle{BQP}\:=\:\angle{DAQ}\: \\ $$
Commented by 1549442205PVT last updated on 20/Jul/20
Question don′t complete,the conditions  isn′t full.So cann′t solve.
$$\mathrm{Question}\:\mathrm{don}'\mathrm{t}\:\mathrm{complete},\mathrm{the}\:\mathrm{conditions} \\ $$$$\mathrm{isn}'\mathrm{t}\:\mathrm{full}.\mathrm{So}\:\mathrm{cann}'\mathrm{t}\:\mathrm{solve}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *