Menu Close

The-digits-of-a-three-digit-number-A-are-written-in-the-reverse-order-to-form-another-three-digit-number-B-If-B-gt-A-and-B-A-is-perfectly-divisible-by-7-Find-the-range-of-values-of-A-




Question Number 113003 by Aina Samuel Temidayo last updated on 10/Sep/20
The digits of a three−digit number A  are written in the reverse order to  form another three−digit number B.  If B>A and B−A is perfectly  divisible by 7. Find the range of  values of A.
$$\mathrm{The}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{a}\:\mathrm{three}−\mathrm{digit}\:\mathrm{number}\:\mathrm{A} \\ $$$$\mathrm{are}\:\mathrm{written}\:\mathrm{in}\:\mathrm{the}\:\mathrm{reverse}\:\mathrm{order}\:\mathrm{to} \\ $$$$\mathrm{form}\:\mathrm{another}\:\mathrm{three}−\mathrm{digit}\:\mathrm{number}\:\mathrm{B}. \\ $$$$\mathrm{If}\:\mathrm{B}>\mathrm{A}\:\mathrm{and}\:\mathrm{B}−\mathrm{A}\:\mathrm{is}\:\mathrm{perfectly} \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{A}. \\ $$
Commented by Rasheed.Sindhi last updated on 10/Sep/20
miss^(?) /mr^(?)  Aina pl read my comment  (Is the answer 8?) of Q#112810
$$\overset{?} {{miss}}/\overset{?} {{mr}}\:{Aina}\:{pl}\:{read}\:{my}\:{comment} \\ $$$$\left({Is}\:{the}\:{answer}\:\mathrm{8}?\right)\:{of}\:{Q}#\mathrm{112810} \\ $$
Commented by Aina Samuel Temidayo last updated on 10/Sep/20
Replied✓
$$\mathrm{Replied}\checkmark \\ $$
Answered by Rasheed.Sindhi last updated on 14/Sep/20
A=100a+10b+c  B=100c+10b+a  Given that:(1)B>A⇒c>a                     (2)7∣B−A  100(c−a)+a−c  100(c−a)−(c−a)  99(c−a)  7 ∣ 99(c−a)  ∵ 7∈P ∧ 7 ∤ 99  ∴ 7∣ c−a  ∴ c−a=7k       c=a+7k  As c>a so k≠0  And for a,c are decimal digits  of a 3-digit  number  so 1≤a,c≤9  ∴ a=1,2 & k=1⇒c=8,9  (a,c)=(1,8) ∧ (a,c)=(2,9)  A=100+10b+8 , 200+10b+9     {: ((A=108,118,128,...,198)),((                      AND)),((A=209,219,229,...,299)) }Ans
$${A}=\mathrm{100}{a}+\mathrm{10}{b}+{c} \\ $$$${B}=\mathrm{100}{c}+\mathrm{10}{b}+{a} \\ $$$${Given}\:{that}:\left(\mathrm{1}\right){B}>{A}\Rightarrow{c}>{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\mathrm{7}\mid{B}−{A} \\ $$$$\mathrm{100}\left({c}−{a}\right)+{a}−{c} \\ $$$$\mathrm{100}\left({c}−{a}\right)−\left({c}−{a}\right) \\ $$$$\mathrm{99}\left({c}−{a}\right) \\ $$$$\mathrm{7}\:\mid\:\mathrm{99}\left({c}−{a}\right) \\ $$$$\because\:\mathrm{7}\in\mathbb{P}\:\wedge\:\mathrm{7}\:\nmid\:\mathrm{99} \\ $$$$\therefore\:\mathrm{7}\mid\:{c}−{a} \\ $$$$\therefore\:{c}−{a}=\mathrm{7}{k} \\ $$$$\:\:\:\:\:{c}={a}+\mathrm{7}{k} \\ $$$${As}\:{c}>{a}\:{so}\:{k}\neq\mathrm{0} \\ $$$${And}\:{for}\:{a},{c}\:{are}\:{decimal}\:{digits} \\ $$$${of}\:{a}\:\mathrm{3}-{digit}\:\:{number} \\ $$$${so}\:\mathrm{1}\leqslant{a},{c}\leqslant\mathrm{9} \\ $$$$\therefore\:{a}=\mathrm{1},\mathrm{2}\:\&\:{k}=\mathrm{1}\Rightarrow{c}=\mathrm{8},\mathrm{9} \\ $$$$\left({a},{c}\right)=\left(\mathrm{1},\mathrm{8}\right)\:\wedge\:\left({a},{c}\right)=\left(\mathrm{2},\mathrm{9}\right) \\ $$$${A}=\mathrm{100}+\mathrm{10}{b}+\mathrm{8}\:,\:\mathrm{200}+\mathrm{10}{b}+\mathrm{9} \\ $$$$ \\ $$$$\left.\begin{matrix}{{A}=\mathrm{108},\mathrm{118},\mathrm{128},…,\mathrm{198}}\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{AND}}\\{{A}=\mathrm{209},\mathrm{219},\mathrm{229},…,\mathrm{299}}\end{matrix}\right\}\mathrm{Ans} \\ $$
Commented by Aina Samuel Temidayo last updated on 11/Sep/20
Thanks.
$$\mathrm{Thanks}. \\ $$
Commented by Rasheed.Sindhi last updated on 12/Sep/20
The last part of my answer is   erroneous. I′ll correct it.
$$\mathcal{T}{he}\:{last}\:{part}\:{of}\:{my}\:{answer}\:{is}\: \\ $$$${erroneous}.\:{I}'{ll}\:{correct}\:{it}. \\ $$
Commented by Rasheed.Sindhi last updated on 14/Sep/20
Corrected.
$${Corrected}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *