Menu Close

The-Diophantine-equation-x-2-y-2-1-N-xy-1-has-infinitely-many-integer-solutions-if-N-equals-




Question Number 110354 by Aina Samuel Temidayo last updated on 28/Aug/20
The Diophantine equation  x^2 +y^2 +1 =N(xy+1) has  infinitely many integer  solutions if N equals?
$$\mathrm{The}\:\mathrm{Diophantine}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{1}\:=\mathrm{N}\left(\mathrm{xy}+\mathrm{1}\right)\:\mathrm{has} \\ $$$$\mathrm{infinitely}\:\mathrm{many}\:\mathrm{integer} \\ $$$$\mathrm{solutions}\:\mathrm{if}\:\mathrm{N}\:\mathrm{equals}? \\ $$
Commented by Aina Samuel Temidayo last updated on 29/Aug/20
Any help please?
$$\mathrm{Any}\:\mathrm{help}\:\mathrm{please}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *