Question Number 110644 by Aina Samuel Temidayo last updated on 29/Aug/20
$$\mathrm{The}\:\mathrm{Diophantine}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{1}\:=\mathrm{N}\left(\mathrm{xy}+\mathrm{1}\right)\:\mathrm{has} \\ $$$$\mathrm{infinitely}\:\mathrm{many}\:\mathrm{integer} \\ $$$$\mathrm{solutions}\:\mathrm{if}\:\mathrm{N}\:\mathrm{equals}? \\ $$$$\mathrm{Any}\:\mathrm{help}\:\mathrm{please}? \\ $$
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
$$\mathrm{No}\:\mathrm{one}\:\mathrm{has}\:\mathrm{been}\:\mathrm{able}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}? \\ $$
Answered by floor(10²Eta[1]) last updated on 30/Aug/20
$$\mathrm{if}\:\mathrm{N}=\mathrm{2} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{1}=\mathrm{2xy}+\mathrm{2} \\ $$$$\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} =\mathrm{1}\Rightarrow\mathrm{x}−\mathrm{y}=\pm\mathrm{1} \\ $$
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
$$\mathrm{Yes}\:\mathrm{but}\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{arrive}\:\mathrm{at}\:\mathrm{N}=\mathrm{2}? \\ $$
Commented by floor(10²Eta[1]) last updated on 30/Aug/20
$$\mathrm{i}\:\mathrm{mean}-\:\mathrm{can}'\mathrm{t}\:\mathrm{you}\:\mathrm{see}\:\mathrm{that}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2xy}=\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} ?? \\ $$