Menu Close

The-domain-of-f-x-x-2-x-where-denotes-fractional-part-of-x-is-




Question Number 15082 by Tinkutara last updated on 07/Jun/17
The domain of f(x) = (√(x − 2{x})). (where  {∙} denotes fractional part of x) is?
$$\mathrm{The}\:\mathrm{domain}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\sqrt{{x}\:−\:\mathrm{2}\left\{{x}\right\}}.\:\left(\mathrm{where}\right. \\ $$$$\left.\left\{\centerdot\right\}\:\mathrm{denotes}\:\mathrm{fractional}\:\mathrm{part}\:\mathrm{of}\:{x}\right)\:\mathrm{is}? \\ $$
Answered by mrW1 last updated on 07/Jun/17
x=n+f  {x}=f  x−2{x}=n+f−2f=n−f≥0  n≥f    if x>0:  n≥f  n≥1  ⇒x≥1    if x≤0:  n≥f  n=0  ⇒x>−1    ⇒x∈(−1,0] and [1,+∞)    check:  x=−0.5  x−2{x}=−0.5−2(−0.5)=0.5>0    x=1.5  x−2{x}=1.5−2×0.5=0.5>0
$$\mathrm{x}=\mathrm{n}+\mathrm{f} \\ $$$$\left\{\mathrm{x}\right\}=\mathrm{f} \\ $$$$\mathrm{x}−\mathrm{2}\left\{\mathrm{x}\right\}=\mathrm{n}+\mathrm{f}−\mathrm{2f}=\mathrm{n}−\mathrm{f}\geqslant\mathrm{0} \\ $$$$\mathrm{n}\geqslant\mathrm{f} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{x}>\mathrm{0}: \\ $$$$\mathrm{n}\geqslant\mathrm{f} \\ $$$$\mathrm{n}\geqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{x}\geqslant\mathrm{1} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{x}\leqslant\mathrm{0}: \\ $$$$\mathrm{n}\geqslant\mathrm{f} \\ $$$$\mathrm{n}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}>−\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow\mathrm{x}\in\left(−\mathrm{1},\mathrm{0}\right]\:\mathrm{and}\:\left[\mathrm{1},+\infty\right) \\ $$$$ \\ $$$$\mathrm{check}: \\ $$$$\mathrm{x}=−\mathrm{0}.\mathrm{5} \\ $$$$\mathrm{x}−\mathrm{2}\left\{\mathrm{x}\right\}=−\mathrm{0}.\mathrm{5}−\mathrm{2}\left(−\mathrm{0}.\mathrm{5}\right)=\mathrm{0}.\mathrm{5}>\mathrm{0} \\ $$$$ \\ $$$$\mathrm{x}=\mathrm{1}.\mathrm{5} \\ $$$$\mathrm{x}−\mathrm{2}\left\{\mathrm{x}\right\}=\mathrm{1}.\mathrm{5}−\mathrm{2}×\mathrm{0}.\mathrm{5}=\mathrm{0}.\mathrm{5}>\mathrm{0} \\ $$
Commented by Tinkutara last updated on 07/Jun/17
But answer is [2, ∞)
$$\mathrm{But}\:\mathrm{answer}\:\mathrm{is}\:\left[\mathrm{2},\:\infty\right) \\ $$
Commented by mrW1 last updated on 07/Jun/17
this answer is wrong. you  can check with x=1.5 which is not  in the range,  but f(x)=(√((1.5)−2(0.5)))=(√(0.5)) ! ok
$$\mathrm{this}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{wrong}.\:\mathrm{you} \\ $$$$\mathrm{can}\:\mathrm{check}\:\mathrm{with}\:\mathrm{x}=\mathrm{1}.\mathrm{5}\:\mathrm{which}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{range}, \\ $$$$\mathrm{but}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\left(\mathrm{1}.\mathrm{5}\right)−\mathrm{2}\left(\mathrm{0}.\mathrm{5}\right)}=\sqrt{\mathrm{0}.\mathrm{5}}\:!\:\mathrm{ok} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *