Menu Close

The-equation-cosec-x-2-cosec-y-2-cosec-z-2-6-where-0-lt-x-y-z-lt-pi-2-and-x-y-z-pi-have-1-Three-ordered-triplet-x-y-z-solutions-2-Two-ordered-triplet-x-y-z-soluti




Question Number 18455 by Tinkutara last updated on 21/Jul/17
The equation cosec (x/2) + cosec (y/2) +  cosec (z/2) = 6, where 0 < x, y, z < (π/2) and  x + y + z = π, have  (1) Three ordered triplet (x, y, z)  solutions  (2) Two ordered triplet (x, y, z)  solutions  (3) Just one ordered triplet (x, y, z)  solution  (4) No ordered triplet (x, y, z) solution
$$\mathrm{The}\:\mathrm{equation}\:\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\:+ \\ $$$$\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}\:=\:\mathrm{6},\:\mathrm{where}\:\mathrm{0}\:<\:{x},\:{y},\:{z}\:<\:\frac{\pi}{\mathrm{2}}\:\mathrm{and} \\ $$$${x}\:+\:{y}\:+\:{z}\:=\:\pi,\:\mathrm{have} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Three}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right) \\ $$$$\mathrm{solutions} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Two}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right) \\ $$$$\mathrm{solutions} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Just}\:\mathrm{one}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right) \\ $$$$\mathrm{solution} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{No}\:\mathrm{ordered}\:\mathrm{triplet}\:\left({x},\:{y},\:{z}\right)\:\mathrm{solution} \\ $$
Answered by Tinkutara last updated on 02/Aug/17
Commented by Tinkutara last updated on 02/Aug/17
Consider the graph of f(x) = cosec (x/2)  in [0, π]. Let A, B and C be three points  on this graph.  A = (x, cosec (x/2)) B = (y, cosec (y/2)),  C = (z, cosec (z/2))  Centroid of this triangle is  (((x + y + z)/3), ((cosec (x/2) + cosec (y/2) + cosec (z/2))/3))  Corresponding to this x-coordinate,  the y-coordinate on the graph i.e.  f(((x + y + z)/3)) = cosec ((x + y + z)/6) = 2  Clearly from the graph it can be seen  that ((cosec (x/2) + cosec (y/2) + cosec (z/2))/3) ≥ 2  ⇒ cosec (x/2) + cosec (y/2) + cosec (z/2) ≥ 6  But given that cosec (x/2) + cosec (y/2) + cosec (z/2) = 6  Hence there is only one case of  x = y = z = (π/3) .
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\mathrm{cosec}\:\frac{{x}}{\mathrm{2}} \\ $$$$\mathrm{in}\:\left[\mathrm{0},\:\pi\right].\:\mathrm{Let}\:{A},\:{B}\:\mathrm{and}\:{C}\:\mathrm{be}\:\mathrm{three}\:\mathrm{points} \\ $$$$\mathrm{on}\:\mathrm{this}\:\mathrm{graph}. \\ $$$${A}\:=\:\left({x},\:\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\right)\:{B}\:=\:\left({y},\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\right), \\ $$$${C}\:=\:\left({z},\:\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}\right) \\ $$$$\mathrm{Centroid}\:\mathrm{of}\:\mathrm{this}\:\mathrm{triangle}\:\mathrm{is} \\ $$$$\left(\frac{{x}\:+\:{y}\:+\:{z}}{\mathrm{3}},\:\frac{\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}}{\mathrm{3}}\right) \\ $$$$\mathrm{Corresponding}\:\mathrm{to}\:\mathrm{this}\:{x}-\mathrm{coordinate}, \\ $$$$\mathrm{the}\:{y}-\mathrm{coordinate}\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph}\:{i}.{e}. \\ $$$${f}\left(\frac{{x}\:+\:{y}\:+\:{z}}{\mathrm{3}}\right)\:=\:\mathrm{cosec}\:\frac{{x}\:+\:{y}\:+\:{z}}{\mathrm{6}}\:=\:\mathrm{2} \\ $$$$\mathrm{Clearly}\:\mathrm{from}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{seen} \\ $$$$\mathrm{that}\:\frac{\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}}{\mathrm{3}}\:\geqslant\:\mathrm{2} \\ $$$$\Rightarrow\:\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}\:\geqslant\:\mathrm{6} \\ $$$$\mathrm{But}\:\mathrm{given}\:\mathrm{that}\:\mathrm{cosec}\:\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{y}}{\mathrm{2}}\:+\:\mathrm{cosec}\:\frac{{z}}{\mathrm{2}}\:=\:\mathrm{6} \\ $$$$\mathrm{Hence}\:\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{case}\:\mathrm{of} \\ $$$${x}\:=\:{y}\:=\:{z}\:=\:\frac{\pi}{\mathrm{3}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *